Skip navigation links
A B C D E F G I K L M N P Q R S T U W Z 

A

AlgorithmConfiguration - Class in weka.classifiers.mi.miti
Stores parameters that determine the configuration of the algorithm.
AlgorithmConfiguration() - Constructor for class weka.classifiers.mi.miti.AlgorithmConfiguration
Default constructor that assigns default values.
AlgorithmConfiguration(int, boolean, int, boolean, double, int, int) - Constructor for class weka.classifiers.mi.miti.AlgorithmConfiguration
Constructor that sets algorithm parameters based on arguments.
ALGORITHMTYPE_ARITHMETIC - Static variable in class weka.classifiers.mi.MILR
collective MI assumption, arithmetic mean for posteriors
ALGORITHMTYPE_DEFAULT - Static variable in class weka.classifiers.mi.MILR
standard MI assumption
ALGORITHMTYPE_GEOMETRIC - Static variable in class weka.classifiers.mi.MILR
collective MI assumption, geometric mean for posteriors
algorithmTypeTipText() - Method in class weka.classifiers.mi.MILR
Returns the tip text for this property
attribute - Variable in class weka.classifiers.mi.miti.Split
 
attributeNames() - Method in class weka.classifiers.mi.MISMO
Returns the attribute names.
attributeSplitChoices - Variable in class weka.classifiers.mi.miti.AlgorithmConfiguration
The number of top ranked attribute splits to randomly pick from (default value 1 has no randomness)
attributesToSplit - Variable in class weka.classifiers.mi.miti.AlgorithmConfiguration
The number of attributes randomly selected to find the best from.
attributesToSplitTipText() - Method in class weka.classifiers.mi.MITI
Help for attributes to split

B

Bag - Class in weka.classifiers.mi.miti
Class for maintaining a bag of instances, including its ID and whether it's enabled.
Bag(Instance) - Constructor for class weka.classifiers.mi.miti.Bag
The constructor.
bagCountMultiplier - Variable in class weka.classifiers.mi.miti.AlgorithmConfiguration
The value used to determine the influence of instance counts when using bag counts.
bagWeight() - Method in class weka.classifiers.mi.miti.Bag
The bag's weight.
baTipText() - Method in class weka.classifiers.mi.MITI
Help for bag-based stats parameter.
BEPP - Class in weka.classifiers.mi.miti
Class with static methods for calculating BEPP score.
BEPP() - Constructor for class weka.classifiers.mi.miti.BEPP
 
bias() - Method in class weka.classifiers.mi.MISMO
Returns the bias of each binary SMO.
bTipText() - Method in class weka.classifiers.mi.MITI
Help for bag-based stats flag.
buildClassifier(Instances) - Method in class weka.classifiers.mi.MDD
Builds the classifier
buildClassifier(Instances) - Method in class weka.classifiers.mi.MIBoost
Builds the classifier
buildClassifier(Instances) - Method in class weka.classifiers.mi.MIDD
Builds the classifier
buildClassifier(Instances) - Method in class weka.classifiers.mi.MIEMDD
Builds the classifier
buildClassifier(Instances) - Method in class weka.classifiers.mi.MILR
Builds the classifier
buildClassifier(Instances) - Method in class weka.classifiers.mi.MINND
As normal Nearest Neighbour algorithm does, it's lazy and simply records the exemplar information (i.e.
buildClassifier(Instances) - Method in class weka.classifiers.mi.MIOptimalBall
Builds the classifier
buildClassifier(Instances) - Method in class weka.classifiers.mi.MIRI
Generates the rule set based on the given training data.
buildClassifier(Instances) - Method in class weka.classifiers.mi.MISMO
Method for building the classifier.
buildClassifier(Instances) - Method in class weka.classifiers.mi.MISVM
Builds the classifier
buildClassifier(Instances) - Method in class weka.classifiers.mi.MITI
Learns the classifier from the training data.
buildClassifier(Instances) - Method in class weka.classifiers.mi.MIWrapper
Builds the classifier
buildClassifier(Instances) - Method in class weka.classifiers.mi.QuickDDIterative
Builds the classifier
buildClassifier(Instances) - Method in class weka.classifiers.mi.SimpleMI
Builds the classifier
buildClassifier(Instances) - Method in class weka.classifiers.mi.TLC
Builds the classifier from the given training data.
buildClassifier(Instances) - Method in class weka.classifiers.mi.TLD
 
buildClassifier(Instances) - Method in class weka.classifiers.mi.TLDSimple
 
buildKernel(Instances) - Method in class weka.classifiers.mi.supportVector.MIRBFKernel
builds the kernel with the given data.
buildLogisticModelsTipText() - Method in class weka.classifiers.mi.MISMO
Returns the tip text for this property

C

calculateDistance(Instances) - Method in class weka.classifiers.mi.MIOptimalBall
calculate the distances from each instance in a positive bag to each bag.
calculateNodeScore(HashMap<Instance, Bag>, boolean, int, boolean, double) - Method in class weka.classifiers.mi.miti.TreeNode
Calculates the node score based on the given arguments.
checksTurnedOffTipText() - Method in class weka.classifiers.mi.MISMO
Returns the tip text for this property
classAttributeNames() - Method in class weka.classifiers.mi.MISMO
Returns the names of the class attributes.
classifyInstance(Instance) - Method in class weka.classifiers.mi.MINND
Use Kullback Leibler distance to find the nearest neighbours of the given exemplar.
classifyInstance(Instance) - Method in class weka.classifiers.mi.TLD
 
classifyInstance(Instance) - Method in class weka.classifiers.mi.TLDSimple
 
clean() - Method in class weka.classifiers.mi.supportVector.MIPolyKernel
Frees the cache used by the kernel.
cleanse(Instance) - Method in class weka.classifiers.mi.MINND
Cleanse the given exemplar according to the valid and noise data statistics
compare(TreeNode, TreeNode) - Method in class weka.classifiers.mi.miti.NextSplitHeuristic
Method used to sort nodes in the priority queue.
considerBothClassesTipText() - Method in class weka.classifiers.mi.QuickDDIterative
Returns the tip text for this property
cTipText() - Method in class weka.classifiers.mi.MISMO
Returns the tip text for this property
cTipText() - Method in class weka.classifiers.mi.MISVM
Returns the tip text for this property

D

deactivateRelatedInstances(HashMap<Instance, Bag>, List<String>) - Method in class weka.classifiers.mi.miti.TreeNode
Deactives all instances associated with bags that have at least one instance in the current node.
disableInstances(List<String>) - Method in class weka.classifiers.mi.miti.Bag
Disables the bag.
discretizeBinTipText() - Method in class weka.classifiers.mi.MIBoost
Returns the tip text for this property
distributionForInstance(Instance) - Method in class weka.classifiers.mi.MDD
Computes the distribution for a given exemplar
distributionForInstance(Instance) - Method in class weka.classifiers.mi.MIBoost
Computes the distribution for a given exemplar
distributionForInstance(Instance) - Method in class weka.classifiers.mi.MIDD
Computes the distribution for a given exemplar
distributionForInstance(Instance) - Method in class weka.classifiers.mi.MIEMDD
Computes the distribution for a given exemplar
distributionForInstance(Instance) - Method in class weka.classifiers.mi.MILR
Computes the distribution for a given exemplar
distributionForInstance(Instance) - Method in class weka.classifiers.mi.MIOptimalBall
Computes the distribution for a given multiple instance
distributionForInstance(Instance) - Method in class weka.classifiers.mi.MIRI
Returns the distribution of "class probabilities" for a new bag.
distributionForInstance(Instance) - Method in class weka.classifiers.mi.MISMO
Estimates class probabilities for given instance.
distributionForInstance(Instance) - Method in class weka.classifiers.mi.MISVM
Computes the distribution for a given exemplar
distributionForInstance(Instance) - Method in class weka.classifiers.mi.MITI
Returns the "class distribution" for the given bag.
distributionForInstance(Instance) - Method in class weka.classifiers.mi.MIWrapper
Computes the distribution for a given exemplar
distributionForInstance(Instance) - Method in class weka.classifiers.mi.QuickDDIterative
Computes the distribution for a given exemplar
distributionForInstance(Instance) - Method in class weka.classifiers.mi.SimpleMI
Computes the distribution for a given exemplar
distributionForInstance(Instance) - Method in class weka.classifiers.mi.TLC
Returns class probabilities for the given instance.
distributionForInstance(Instance) - Method in class weka.classifiers.mi.TLDSimple
Computes the distribution for a given exemplar

E

enumerateMeasures() - Method in class weka.classifiers.mi.MIRI
Returns an enumeration of the additional measure names.
enumerateMeasures() - Method in class weka.classifiers.mi.MITI
Returns an enumeration of the additional measure names.
epsilonTipText() - Method in class weka.classifiers.mi.MISMO
Returns the tip text for this property

F

FILTER_NONE - Static variable in class weka.classifiers.mi.MDD
No normalization/standardization
FILTER_NONE - Static variable in class weka.classifiers.mi.MIDD
No normalization/standardization
FILTER_NONE - Static variable in class weka.classifiers.mi.MIEMDD
No normalization/standardization
FILTER_NONE - Static variable in class weka.classifiers.mi.MIOptimalBall
No normalization/standardization
FILTER_NONE - Static variable in class weka.classifiers.mi.MISMO
No normalization/standardization
FILTER_NONE - Static variable in class weka.classifiers.mi.MISVM
No normalization/standardization
FILTER_NONE - Static variable in class weka.classifiers.mi.QuickDDIterative
No normalization/standardization
FILTER_NORMALIZE - Static variable in class weka.classifiers.mi.MDD
Normalize training data
FILTER_NORMALIZE - Static variable in class weka.classifiers.mi.MIDD
Normalize training data
FILTER_NORMALIZE - Static variable in class weka.classifiers.mi.MIEMDD
Normalize training data
FILTER_NORMALIZE - Static variable in class weka.classifiers.mi.MIOptimalBall
Normalize training data
FILTER_NORMALIZE - Static variable in class weka.classifiers.mi.MISMO
Normalize training data
FILTER_NORMALIZE - Static variable in class weka.classifiers.mi.MISVM
Normalize training data
FILTER_NORMALIZE - Static variable in class weka.classifiers.mi.QuickDDIterative
Normalize training data
FILTER_STANDARDIZE - Static variable in class weka.classifiers.mi.MDD
Standardize training data
FILTER_STANDARDIZE - Static variable in class weka.classifiers.mi.MIDD
Standardize training data
FILTER_STANDARDIZE - Static variable in class weka.classifiers.mi.MIEMDD
Standardize training data
FILTER_STANDARDIZE - Static variable in class weka.classifiers.mi.MIOptimalBall
Standardize training data
FILTER_STANDARDIZE - Static variable in class weka.classifiers.mi.MISMO
Standardize training data
FILTER_STANDARDIZE - Static variable in class weka.classifiers.mi.MISVM
Standardize training data
FILTER_STANDARDIZE - Static variable in class weka.classifiers.mi.QuickDDIterative
Standardize training data
filterTypeTipText() - Method in class weka.classifiers.mi.MDD
Returns the tip text for this property
filterTypeTipText() - Method in class weka.classifiers.mi.MIDD
Returns the tip text for this property
filterTypeTipText() - Method in class weka.classifiers.mi.MIEMDD
Returns the tip text for this property
filterTypeTipText() - Method in class weka.classifiers.mi.MIOptimalBall
Returns the tip text for this property
filterTypeTipText() - Method in class weka.classifiers.mi.MISMO
Returns the tip text for this property
filterTypeTipText() - Method in class weka.classifiers.mi.MISVM
Returns the tip text for this property
filterTypeTipText() - Method in class weka.classifiers.mi.QuickDDIterative
Returns the tip text for this property
findRadius(Instances) - Method in class weka.classifiers.mi.MIOptimalBall
Find the maximum radius for the optimal ball.
findWeights(int, double[][]) - Method in class weka.classifiers.mi.MINND
Use gradient descent to distort the MU parameter for the exemplar.

G

getAlgorithmType() - Method in class weka.classifiers.mi.MILR
Gets the type of algorithm.
getAttributesToSplit() - Method in class weka.classifiers.mi.MITI
Getter method.
getB() - Method in class weka.classifiers.mi.MITI
Getter for B.
getBa() - Method in class weka.classifiers.mi.MITI
Getter for Ba.
GetBEPP(SufficientStatistics, int, boolean) - Static method in class weka.classifiers.mi.miti.BEPP
Calculates score for entire set based on given sufficient statistics and parameters.
GetBEPP(double, double, int, boolean) - Static method in class weka.classifiers.mi.miti.BEPP
Calculates score based on given counts and parameters.
getBepp(List<Instance>, HashMap<Instance, Bag>, boolean, int, boolean, double) - Static method in class weka.classifiers.mi.miti.NextSplitHeuristic
Method used to get the BEPP scores based on the given arguments.
getBestSplitPoint(Attribute, ArrayList<Instance>, HashMap<Instance, Bag>, AlgorithmConfiguration) - Static method in class weka.classifiers.mi.miti.Split
Finds the best split based on the given arguments.
getBuildLogisticModels() - Method in class weka.classifiers.mi.MISMO
Get the value of buildLogisticModels.
getC() - Method in class weka.classifiers.mi.MISMO
Get the value of C.
getC() - Method in class weka.classifiers.mi.MISVM
Get the value of C.
getCapabilities() - Method in class weka.classifiers.mi.MDD
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.MIBoost
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.MIDD
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.MIEMDD
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.MILR
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.MINND
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.MIOptimalBall
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.MISMO
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.MISVM
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.MITI
Returns the capabilities of this classifier.
getCapabilities() - Method in class weka.classifiers.mi.MIWrapper
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.QuickDDIterative
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.SimpleMI
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.supportVector.MIPolyKernel
Returns the Capabilities of this kernel.
getCapabilities() - Method in class weka.classifiers.mi.supportVector.MIRBFKernel
Returns the Capabilities of this kernel.
getCapabilities() - Method in class weka.classifiers.mi.TLC
Returns the Capabilities of this filter.
getCapabilities() - Method in class weka.classifiers.mi.TLD
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.mi.TLDSimple
Returns default capabilities of the classifier.
getChecksTurnedOff() - Method in class weka.classifiers.mi.MISMO
Returns whether the checks are turned off or not.
getConsiderBothClasses() - Method in class weka.classifiers.mi.QuickDDIterative
Get wether to consider both classes as "positive" class in turn.
getDiscretizeBin() - Method in class weka.classifiers.mi.MIBoost
Get the number of bins in discretization
getEpsilon() - Method in class weka.classifiers.mi.MISMO
Get the value of epsilon.
getFilterType() - Method in class weka.classifiers.mi.MDD
Gets how the training data will be transformed.
getFilterType() - Method in class weka.classifiers.mi.MIDD
Gets how the training data will be transformed.
getFilterType() - Method in class weka.classifiers.mi.MIEMDD
Gets how the training data will be transformed.
getFilterType() - Method in class weka.classifiers.mi.MIOptimalBall
Gets how the training data will be transformed.
getFilterType() - Method in class weka.classifiers.mi.MISMO
Gets how the training data will be transformed.
getFilterType() - Method in class weka.classifiers.mi.MISVM
Gets how the training data will be transformed.
getFilterType() - Method in class weka.classifiers.mi.QuickDDIterative
Gets how the training data will be transformed.
getGiniImpurity(SufficientStatistics, int, boolean) - Static method in class weka.classifiers.mi.miti.Gini
Returns Gini impurity score of the two groups after the split - the closer to zero, the better the split.
getGiniImpurity(double[], double[], int, boolean) - Static method in class weka.classifiers.mi.miti.Gini
Returns Gini impurity score for the N groups after a nominal split (the closer to zero, the better the split).
getK() - Method in class weka.classifiers.mi.MITI
Getter for K.
getKernel() - Method in class weka.classifiers.mi.MISMO
Gets the kernel to use.
getKernel() - Method in class weka.classifiers.mi.MISVM
Gets the kernel to use.
getL() - Method in class weka.classifiers.mi.MITI
Getter for L.
GetLeftBEPP(SufficientStatistics, int, boolean) - Static method in class weka.classifiers.mi.miti.BEPP
Calculates score for left subset based on given sufficient statistics and parameters.
getMaxBEPP(SufficientStatistics, int, boolean) - Static method in class weka.classifiers.mi.miti.MaxBEPP
Computes MaxBEPP score for two subsets; the larger the better.
getMaxBEPP(double[], double[], int, boolean) - Static method in class weka.classifiers.mi.miti.MaxBEPP
Computes MaxBEPP score for nominal case; the larger the better.
getMaxIterations() - Method in class weka.classifiers.mi.MIBoost
Get the maximum number of boost iterations
getMaxIterations() - Method in class weka.classifiers.mi.MISVM
Gets the maximum number of iterations.
getMaxIterations() - Method in class weka.classifiers.mi.QuickDDIterative
 
getMaxProbNegativeClass() - Method in class weka.classifiers.mi.QuickDDIterative
Get the maximum probability for the negative class.
getMeasure(String) - Method in class weka.classifiers.mi.MIRI
Returns the value of the named measure.
getMeasure(String) - Method in class weka.classifiers.mi.MITI
Returns the value of the named measure.
getMethod() - Method in class weka.classifiers.mi.MIWrapper
Get the method used in testing.
getMinimax() - Method in class weka.classifiers.mi.MISMO
Check if the MIMinimax feature space is to be used.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.MDD
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.MIBoost
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.MIDD
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.MIEMDD
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.MILR
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.MINND
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.MIOptimalBall
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.MISMO
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.MISVM
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.MITI
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.MIWrapper
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.QuickDDIterative
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.SimpleMI
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.supportVector.MIPolyKernel
Returns the capabilities of this multi-instance kernel for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.supportVector.MIRBFKernel
Returns the capabilities of this multi-instance kernel for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.TLC
Returns the capabilities of this multi-instance filter for the relational data (i.e., the bags).
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.TLD
Returns the capabilities of this multi-instance classifier for the relational data.
getMultiInstanceCapabilities() - Method in class weka.classifiers.mi.TLDSimple
Returns the capabilities of this multi-instance classifier for the relational data.
getNumFolds() - Method in class weka.classifiers.mi.MISMO
Get the value of numFolds.
getNumNeighbours() - Method in class weka.classifiers.mi.MINND
Returns the number of nearest neighbours to estimate the class prediction of tests bags
getNumRuns() - Method in class weka.classifiers.mi.TLD
Returns the number of runs to perform.
getNumRuns() - Method in class weka.classifiers.mi.TLDSimple
Returns the number of runs to perform.
getNumTestingNoises() - Method in class weka.classifiers.mi.MINND
Returns The number of nearest neighbour instances in the selection of noises in the test data
getNumTrainingNoises() - Method in class weka.classifiers.mi.MINND
Returns the number of nearest neighbour instances in the selection of noises in the training data
getOptions() - Method in class weka.classifiers.mi.MDD
Gets the current settings of the classifier.
getOptions() - Method in class weka.classifiers.mi.MIBoost
Gets the current settings of the classifier.
getOptions() - Method in class weka.classifiers.mi.MIDD
Gets the current settings of the classifier.
getOptions() - Method in class weka.classifiers.mi.MIEMDD
Gets the current settings of the classifier.
getOptions() - Method in class weka.classifiers.mi.MILR
Gets the current settings of the classifier.
getOptions() - Method in class weka.classifiers.mi.MINND
Gets the current settings of the Classifier.
getOptions() - Method in class weka.classifiers.mi.MIOptimalBall
Gets the current settings of the classifier.
getOptions() - Method in class weka.classifiers.mi.MISMO
Gets the current settings of the classifier.
getOptions() - Method in class weka.classifiers.mi.MISVM
Gets the current settings of the classifier.
getOptions() - Method in class weka.classifiers.mi.MITI
Gets the current settings of the Classifier.
getOptions() - Method in class weka.classifiers.mi.MIWrapper
Gets the current settings of the Classifier.
getOptions() - Method in class weka.classifiers.mi.QuickDDIterative
Gets the current settings of the classifier.
getOptions() - Method in class weka.classifiers.mi.SimpleMI
Gets the current settings of the Classifier.
getOptions() - Method in class weka.classifiers.mi.TLC
Gets the current settings of the filter.
getOptions() - Method in class weka.classifiers.mi.TLD
Gets the current settings of the Classifier.
getOptions() - Method in class weka.classifiers.mi.TLDSimple
Gets the current settings of the Classifier.
getPartitionGenerator() - Method in class weka.classifiers.mi.TLC
Get the generator used by this filter
getRandomSeed() - Method in class weka.classifiers.mi.MISMO
Get the value of randomSeed.
getRevision() - Method in class weka.classifiers.mi.MDD
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.MIBoost
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.MIDD
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.MIEMDD
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.MILR
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.MINND
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.MIOptimalBall
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.MISMO
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.MISVM
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.MIWrapper
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.QuickDDIterative
Returns the revision string
getRevision() - Method in class weka.classifiers.mi.SimpleMI
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.supportVector.MIPolyKernel
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.supportVector.MIRBFKernel
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.TLC
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.TLD
Returns the revision string.
getRevision() - Method in class weka.classifiers.mi.TLDSimple
Returns the revision string.
getRidge() - Method in class weka.classifiers.mi.MILR
Gets the ridge in the log-likelihood.
GetRightBEPP(SufficientStatistics, int, boolean) - Static method in class weka.classifiers.mi.miti.BEPP
Calculates score for right subset based on given sufficient statistics and parameters.
getScalingFactor() - Method in class weka.classifiers.mi.QuickDDIterative
Get the scaling factor for the Gaussian-like function at the target point.
getScore(SufficientStatistics, int, boolean) - Method in class weka.classifiers.mi.miti.Gini
Returns purity score of the two groups after the split - larger is better
getScore(double[], double[], int, boolean) - Method in class weka.classifiers.mi.miti.Gini
Returns purity score for the N groups after a nominal split - larger is better
getScore(SufficientStatistics, int, boolean) - Method in interface weka.classifiers.mi.miti.IBestSplitMeasure
Returns a purity score of the two groups after the split - larger is better
getScore(double[], double[], int, boolean) - Method in interface weka.classifiers.mi.miti.IBestSplitMeasure
Returns a purity score for the N groups after a nominal split - larger is better
getScore(SufficientStatistics, int, boolean) - Method in class weka.classifiers.mi.miti.MaxBEPP
Computes MaxBEPP score for two subsets; the larger the better.
getScore(double[], double[], int, boolean) - Method in class weka.classifiers.mi.miti.MaxBEPP
Computes MaxBEPP score for nominal case; the larger the better.
getScore(SufficientStatistics, int, boolean) - Method in class weka.classifiers.mi.miti.SSBEPP
Returns SSBEPP score of the two groups after the split - the larger the better
getScore(double[], double[], int, boolean) - Method in class weka.classifiers.mi.miti.SSBEPP
Stub: implementation for nominal attributes not complete; will simply exit.
getSplitMethod() - Method in class weka.classifiers.mi.MITI
Getter method.
getSSBEPP(SufficientStatistics, int, boolean) - Static method in class weka.classifiers.mi.miti.SSBEPP
Returns SSBEPP score of the two groups after the split - the larger the better
getTechnicalInformation() - Method in class weka.classifiers.mi.MDD
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.MIBoost
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.MIDD
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.MIEMDD
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.MINND
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.MIOptimalBall
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.MISMO
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.MISVM
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.MITI
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.MIWrapper
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.QuickDDIterative
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.TLC
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.TLD
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTechnicalInformation() - Method in class weka.classifiers.mi.TLDSimple
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getToleranceParameter() - Method in class weka.classifiers.mi.MISMO
Get the value of tolerance parameter.
getTopNAttributesToSplit() - Method in class weka.classifiers.mi.MITI
Getter method.
getTransformMethod() - Method in class weka.classifiers.mi.SimpleMI
Get the method used in transformation.
getUnbiasedEstimate() - Method in class weka.classifiers.mi.MITI
Getter for unbiased estimate flag.
getUsingCutOff() - Method in class weka.classifiers.mi.TLD
Returns whether an empirical cutoff is used
getUsingCutOff() - Method in class weka.classifiers.mi.TLDSimple
Returns whether an empirical cutoff is used
getWeightMethod() - Method in class weka.classifiers.mi.MIWrapper
Returns the current weighting method for instances.
Gini - Class in weka.classifiers.mi.miti
Implements the Gini-based split selection measure.
Gini() - Constructor for class weka.classifiers.mi.miti.Gini
 
globalInfo() - Method in class weka.classifiers.mi.MDD
Returns a string describing this filter
globalInfo() - Method in class weka.classifiers.mi.MIBoost
Returns a string describing this filter
globalInfo() - Method in class weka.classifiers.mi.MIDD
Returns a string describing this filter
globalInfo() - Method in class weka.classifiers.mi.MIEMDD
Returns a string describing this filter
globalInfo() - Method in class weka.classifiers.mi.MILR
Returns the tip text for this property
globalInfo() - Method in class weka.classifiers.mi.MINND
Returns a string describing this filter
globalInfo() - Method in class weka.classifiers.mi.MIOptimalBall
Returns a string describing this filter
globalInfo() - Method in class weka.classifiers.mi.MIRI
Returns a string describing classifier
globalInfo() - Method in class weka.classifiers.mi.MISMO
Returns a string describing classifier
globalInfo() - Method in class weka.classifiers.mi.MISVM
Returns a string describing this filter
globalInfo() - Method in class weka.classifiers.mi.MITI
Returns a string describing classifier
globalInfo() - Method in class weka.classifiers.mi.MIWrapper
Returns a string describing this filter
globalInfo() - Method in class weka.classifiers.mi.QuickDDIterative
Returns a string describing this filter
globalInfo() - Method in class weka.classifiers.mi.SimpleMI
Returns a string describing this filter
globalInfo() - Method in class weka.classifiers.mi.TLC
Returns a string describing this filter
globalInfo() - Method in class weka.classifiers.mi.TLD
Returns a string describing this filter
globalInfo() - Method in class weka.classifiers.mi.TLDSimple
Returns a string describing this filter

I

IBestSplitMeasure - Interface in weka.classifiers.mi.miti
Interface to be implemented by split selection measures.
instances() - Method in class weka.classifiers.mi.miti.Bag
Returns the instances in the bag.
isEnabled() - Method in class weka.classifiers.mi.miti.Bag
Is the bag enabled?
isLeafNode() - Method in class weka.classifiers.mi.miti.TreeNode
Is node a leaf?
isNominal - Variable in class weka.classifiers.mi.miti.Split
 
isPositive() - Method in class weka.classifiers.mi.miti.Bag
Is the bag positive?
isPositiveLeaf() - Method in class weka.classifiers.mi.miti.TreeNode
Is node a positive leaf?
isPureNegative(HashMap<Instance, Bag>) - Method in class weka.classifiers.mi.miti.TreeNode
Checks whether all the instances at the node are associated with positive bags.
isPurePositive(HashMap<Instance, Bag>) - Method in class weka.classifiers.mi.miti.TreeNode
Checks whether all the instances at the node are associated with negative bags.

K

kBEPPConstant - Variable in class weka.classifiers.mi.miti.AlgorithmConfiguration
The constant used to scale the influence of a node's size on its split score.
kernelTipText() - Method in class weka.classifiers.mi.MISMO
Returns the tip text for this property
kernelTipText() - Method in class weka.classifiers.mi.MISVM
Returns the tip text for this property
kTipText() - Method in class weka.classifiers.mi.MITI
Help for K parameter.
kullback(double[], double[], double[], double[], int) - Method in class weka.classifiers.mi.MINND
This function calculates the Kullback Leibler distance between two normal distributions.

L

left() - Method in class weka.classifiers.mi.miti.TreeNode
Returns the left child in the case of a binary split.
listOptions() - Method in class weka.classifiers.mi.MDD
Returns an enumeration describing the available options
listOptions() - Method in class weka.classifiers.mi.MIBoost
Returns an enumeration describing the available options
listOptions() - Method in class weka.classifiers.mi.MIDD
Returns an enumeration describing the available options
listOptions() - Method in class weka.classifiers.mi.MIEMDD
Returns an enumeration describing the available options
listOptions() - Method in class weka.classifiers.mi.MILR
Returns an enumeration describing the available options
listOptions() - Method in class weka.classifiers.mi.MINND
Returns an enumeration describing the available options
listOptions() - Method in class weka.classifiers.mi.MIOptimalBall
Returns an enumeration describing the available options.
listOptions() - Method in class weka.classifiers.mi.MISMO
Returns an enumeration describing the available options.
listOptions() - Method in class weka.classifiers.mi.MISVM
Returns an enumeration describing the available options
listOptions() - Method in class weka.classifiers.mi.MITI
Lists the options for this classifier.
listOptions() - Method in class weka.classifiers.mi.MIWrapper
Returns an enumeration describing the available options.
listOptions() - Method in class weka.classifiers.mi.QuickDDIterative
Returns an enumeration describing the available options
listOptions() - Method in class weka.classifiers.mi.SimpleMI
Returns an enumeration describing the available options.
listOptions() - Method in class weka.classifiers.mi.TLC
Returns an enumeration describing the available options.
listOptions() - Method in class weka.classifiers.mi.TLD
Returns an enumeration describing the available options
listOptions() - Method in class weka.classifiers.mi.TLDSimple
Returns an enumeration describing the available options
lTipText() - Method in class weka.classifiers.mi.MITI
Help for scale parameter.

M

main(String[]) - Static method in class weka.classifiers.mi.MDD
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.mi.MIBoost
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.mi.MIDD
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.mi.MIEMDD
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.mi.MILR
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.mi.MINND
Main method for testing.
main(String[]) - Static method in class weka.classifiers.mi.MIOptimalBall
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.mi.MIRI
Used to run the algorithm from the command-line.
main(String[]) - Static method in class weka.classifiers.mi.MISMO
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.mi.MISVM
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.mi.MITI
Used to run the classifier from the command-line.
main(String[]) - Static method in class weka.classifiers.mi.MIWrapper
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.mi.QuickDDIterative
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.mi.SimpleMI
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.mi.TLC
Main method for running this class from the command-line.
main(String[]) - Static method in class weka.classifiers.mi.TLD
Main method for testing.
main(String[]) - Static method in class weka.classifiers.mi.TLDSimple
Main method for testing.
makeLeafNode(boolean) - Method in class weka.classifiers.mi.miti.TreeNode
Turns the node into a leaf node.
MaxBEPP - Class in weka.classifiers.mi.miti
Implements the MaxBEPP split selection measure.
MaxBEPP() - Constructor for class weka.classifiers.mi.miti.MaxBEPP
 
maxIterationsTipText() - Method in class weka.classifiers.mi.MIBoost
Returns the tip text for this property
maxIterationsTipText() - Method in class weka.classifiers.mi.MISVM
Returns the tip text for this property
maxIterationsTipText() - Method in class weka.classifiers.mi.QuickDDIterative
Returns the tip text for this property
maxProbNegativeClassTipText() - Method in class weka.classifiers.mi.QuickDDIterative
Returns the tip text for this property
MDD - Class in weka.classifiers.mi
Modified Diverse Density algorithm, with collective assumption.

More information about DD:

Oded Maron (1998).
MDD() - Constructor for class weka.classifiers.mi.MDD
 
method - Variable in class weka.classifiers.mi.miti.AlgorithmConfiguration
The method used to score a split (1 = Gini, 2 = Max BEPP, 3 = SSBEPP)
methodTipText() - Method in class weka.classifiers.mi.MIWrapper
Returns the tip text for this property
MIBoost - Class in weka.classifiers.mi
MI AdaBoost method, considers the geometric mean of posterior of instances inside a bag (arithmatic mean of log-posterior) and the expectation for a bag is taken inside the loss function.

For more information about Adaboost, see:

Yoav Freund, Robert E.
MIBoost() - Constructor for class weka.classifiers.mi.MIBoost
 
MIDD - Class in weka.classifiers.mi
Re-implement the Diverse Density algorithm, changes the testing procedure.

Oded Maron (1998).
MIDD() - Constructor for class weka.classifiers.mi.MIDD
 
MIEMDD - Class in weka.classifiers.mi
EMDD model builds heavily upon Dietterich's Diverse Density (DD) algorithm.
It is a general framework for MI learning of converting the MI problem to a single-instance setting using EM.
MIEMDD() - Constructor for class weka.classifiers.mi.MIEMDD
 
MILR - Class in weka.classifiers.mi
Uses either standard or collective multi-instance assumption, but within linear regression.
MILR() - Constructor for class weka.classifiers.mi.MILR
 
minBagDistance(Instance, Instance) - Method in class weka.classifiers.mi.MIOptimalBall
Calculate the distance from one data point to a bag
minimax(Instances, int) - Static method in class weka.classifiers.mi.SimpleMI
Get the minimal and maximal value of a certain attribute in a certain data
minimaxTipText() - Method in class weka.classifiers.mi.MISMO
Returns the tip text for this property
MINND - Class in weka.classifiers.mi
Multiple-Instance Nearest Neighbour with Distribution learner.

It uses gradient descent to find the weight for each dimension of each exeamplar from the starting point of 1.0.
MINND() - Constructor for class weka.classifiers.mi.MINND
 
MIOptimalBall - Class in weka.classifiers.mi
This classifier tries to find a suitable ball in the multiple-instance space, with a certain data point in the instance space as a ball center.
MIOptimalBall() - Constructor for class weka.classifiers.mi.MIOptimalBall
 
MIPolyKernel - Class in weka.classifiers.mi.supportVector
The polynomial kernel : K(x, y) = <x, y>^p or K(x, y) = (<x, y>+1)^p

Valid options are:

MIPolyKernel() - Constructor for class weka.classifiers.mi.supportVector.MIPolyKernel
default constructor - does nothing.
MIPolyKernel(Instances, int, double, boolean) - Constructor for class weka.classifiers.mi.supportVector.MIPolyKernel
Creates a new MIPolyKernel instance.
MIRBFKernel - Class in weka.classifiers.mi.supportVector
The RBF kernel.
MIRBFKernel() - Constructor for class weka.classifiers.mi.supportVector.MIRBFKernel
default constructor - does nothing.
MIRBFKernel(Instances, int, double) - Constructor for class weka.classifiers.mi.supportVector.MIRBFKernel
Constructor.
MIRI - Class in weka.classifiers.mi
MIRI (Multi Instance Rule Inducer): multi-instance classifier that utilizes partial MITI trees witha single positive leaf to learn and represent rules.
MIRI() - Constructor for class weka.classifiers.mi.MIRI
 
MISMO - Class in weka.classifiers.mi
Implements John Platt's sequential minimal optimization algorithm for training a support vector classifier.

This implementation globally replaces all missing values and transforms nominal attributes into binary ones.
MISMO() - Constructor for class weka.classifiers.mi.MISMO
 
MISVM - Class in weka.classifiers.mi
Implements Stuart Andrews' mi_SVM (Maximum pattern Margin Formulation of MIL).
MISVM() - Constructor for class weka.classifiers.mi.MISVM
 
MITI - Class in weka.classifiers.mi
MITI (Multi Instance Tree Inducer): multi-instance classification based a decision tree learned using Blockeel et al.'s algorithm.
MITI() - Constructor for class weka.classifiers.mi.MITI
 
MIWrapper - Class in weka.classifiers.mi
A simple Wrapper method for applying standard propositional learners to multi-instance data.

For more information see:

E.
MIWrapper() - Constructor for class weka.classifiers.mi.MIWrapper
 

N

NextSplitHeuristic - Class in weka.classifiers.mi.miti
Implements the node selection heuristic.
NextSplitHeuristic() - Constructor for class weka.classifiers.mi.miti.NextSplitHeuristic
 
nodeScore() - Method in class weka.classifiers.mi.miti.TreeNode
Returns the score for this node.
nominals() - Method in class weka.classifiers.mi.miti.TreeNode
Returns the children in the case of a nominal-attribute split.
numClassAttributeValues() - Method in class weka.classifiers.mi.MISMO
Returns the number of values of the class attribute.
numFoldsTipText() - Method in class weka.classifiers.mi.MISMO
Returns the tip text for this property
numNeighboursTipText() - Method in class weka.classifiers.mi.MINND
Returns the tip text for this property
numRunsTipText() - Method in class weka.classifiers.mi.TLD
Returns the tip text for this property
numRunsTipText() - Method in class weka.classifiers.mi.TLDSimple
Returns the tip text for this property
numTestingNoisesTipText() - Method in class weka.classifiers.mi.MINND
Returns the tip text for this property
numTrainingNoisesTipText() - Method in class weka.classifiers.mi.MINND
Returns the tip text for this property

P

pairwiseCoupling(double[][], double[][]) - Method in class weka.classifiers.mi.MISMO
Implements pairwise coupling.
parent() - Method in class weka.classifiers.mi.miti.TreeNode
Returns the parent.
partitionGeneratorTipText() - Method in class weka.classifiers.mi.TLC
Returns a description of this option suitable for display as a tip text in the gui.
positiveCountLeft() - Method in class weka.classifiers.mi.miti.SufficientBagStatistics
The number of positive cases on the left side.
positiveCountLeft() - Method in class weka.classifiers.mi.miti.SufficientInstanceStatistics
The number of positive cases on the left side.
positiveCountLeft() - Method in interface weka.classifiers.mi.miti.SufficientStatistics
The number of positive cases on the left side.
positiveCountRight() - Method in class weka.classifiers.mi.miti.SufficientBagStatistics
The number of positive cases on the right side.
positiveCountRight() - Method in class weka.classifiers.mi.miti.SufficientInstanceStatistics
The number of positive cases on the right side.
positiveCountRight() - Method in interface weka.classifiers.mi.miti.SufficientStatistics
The number of positive cases on the right side.
preprocess(Instances, int) - Method in class weka.classifiers.mi.MINND
Pre-process the given exemplar according to the other exemplars in the given exemplars.
printDeactivatedInstances(List<String>) - Static method in class weka.classifiers.mi.miti.Bag
Prints all the deactivated instances to standard out.

Q

QuickDDIterative - Class in weka.classifiers.mi
Modified, faster, iterative version of the basic diverse density algorithm.
QuickDDIterative() - Constructor for class weka.classifiers.mi.QuickDDIterative
 

R

randomSeedTipText() - Method in class weka.classifiers.mi.MISMO
Returns the tip text for this property
removeDeactivatedInstances(HashMap<Instance, Bag>) - Method in class weka.classifiers.mi.miti.TreeNode
Removes deactivated instances from the node.
render(int, HashMap<Instance, Bag>) - Method in class weka.classifiers.mi.miti.TreeNode
Recursively renders this node and its branches as a tabbed out tree
ridgeTipText() - Method in class weka.classifiers.mi.MILR
Returns the tip text for this property
right() - Method in class weka.classifiers.mi.miti.TreeNode
Returns the right child in the case of a binary split.

S

scalingFactorTipText() - Method in class weka.classifiers.mi.QuickDDIterative
Returns the tip text for this property
score - Variable in class weka.classifiers.mi.miti.Split
 
setAlgorithmType(SelectedTag) - Method in class weka.classifiers.mi.MILR
Sets the algorithm type.
setAttributesToSplit(int) - Method in class weka.classifiers.mi.MITI
Setter method.
setB(boolean) - Method in class weka.classifiers.mi.MITI
Setter for B.
setBa(double) - Method in class weka.classifiers.mi.MITI
Setter for Ba.
setBagWeightMultiplier(double) - Method in class weka.classifiers.mi.miti.Bag
The multiplier for the bag weight.
setBuildLogisticModels(boolean) - Method in class weka.classifiers.mi.MISMO
Set the value of buildLogisticModels.
setC(double) - Method in class weka.classifiers.mi.MISMO
Set the value of C.
setC(double) - Method in class weka.classifiers.mi.MISVM
Set the value of C.
setChecksTurnedOff(boolean) - Method in class weka.classifiers.mi.MISMO
Disables or enables the checks (which could be time-consuming).
setConsiderBothClasses(boolean) - Method in class weka.classifiers.mi.QuickDDIterative
Set wether to consider both classes as "positive" class in turn.
setDiscretizeBin(int) - Method in class weka.classifiers.mi.MIBoost
Set the number of bins in discretization
setEpsilon(double) - Method in class weka.classifiers.mi.MISMO
Set the value of epsilon.
setFilterType(SelectedTag) - Method in class weka.classifiers.mi.MDD
Sets how the training data will be transformed.
setFilterType(SelectedTag) - Method in class weka.classifiers.mi.MIDD
Sets how the training data will be transformed.
setFilterType(SelectedTag) - Method in class weka.classifiers.mi.MIEMDD
Sets how the training data will be transformed.
setFilterType(SelectedTag) - Method in class weka.classifiers.mi.MIOptimalBall
Sets how the training data will be transformed.
setFilterType(SelectedTag) - Method in class weka.classifiers.mi.MISMO
Sets how the training data will be transformed.
setFilterType(SelectedTag) - Method in class weka.classifiers.mi.MISVM
Sets how the training data will be transformed.
setFilterType(SelectedTag) - Method in class weka.classifiers.mi.QuickDDIterative
Sets how the training data will be transformed.
setK(int) - Method in class weka.classifiers.mi.MITI
Setter for K.
setKernel(Kernel) - Method in class weka.classifiers.mi.MISMO
Sets the kernel to use.
setKernel(Kernel) - Method in class weka.classifiers.mi.MISVM
Sets the kernel to use.
setL(boolean) - Method in class weka.classifiers.mi.MITI
Setter for L.
setMaxIterations(int) - Method in class weka.classifiers.mi.MIBoost
Set the maximum number of boost iterations
setMaxIterations(int) - Method in class weka.classifiers.mi.MISVM
Sets the maximum number of iterations.
setMaxIterations(int) - Method in class weka.classifiers.mi.QuickDDIterative
 
setMaxProbNegativeClass(double) - Method in class weka.classifiers.mi.QuickDDIterative
Set the maximum probability for the negative class.
setMethod(SelectedTag) - Method in class weka.classifiers.mi.MIWrapper
Set the method used in testing.
setMinimax(boolean) - Method in class weka.classifiers.mi.MISMO
Set if the MIMinimax feature space is to be used.
setNumFolds(int) - Method in class weka.classifiers.mi.MISMO
Set the value of numFolds.
setNumNeighbours(int) - Method in class weka.classifiers.mi.MINND
Sets the number of nearest neighbours to estimate the class prediction of tests bags
setNumRuns(int) - Method in class weka.classifiers.mi.TLD
Sets the number of runs to perform.
setNumRuns(int) - Method in class weka.classifiers.mi.TLDSimple
Sets the number of runs to perform.
setNumTestingNoises(int) - Method in class weka.classifiers.mi.MINND
Sets The number of nearest neighbour exemplars in the selection of noises in the test data
setNumTrainingNoises(int) - Method in class weka.classifiers.mi.MINND
Sets the number of nearest neighbour instances in the selection of noises in the training data
setOptions(String[]) - Method in class weka.classifiers.mi.MDD
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.MIBoost
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.MIDD
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.MIEMDD
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.MILR
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.MINND
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.MIOptimalBall
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.MISMO
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.MISVM
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.MITI
Determines the settings of the Classifier.
setOptions(String[]) - Method in class weka.classifiers.mi.MIWrapper
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.QuickDDIterative
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.SimpleMI
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.TLC
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.TLD
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.mi.TLDSimple
Parses a given list of options.
setPartitionGenerator(PartitionGenerator) - Method in class weka.classifiers.mi.TLC
Set the generator for use in filtering
setRandomSeed(int) - Method in class weka.classifiers.mi.MISMO
Set the value of randomSeed.
setRidge(double) - Method in class weka.classifiers.mi.MILR
Sets the ridge in the log-likelihood.
setScalingFactor(double) - Method in class weka.classifiers.mi.QuickDDIterative
Set the scaling factor for the Gaussian-like function at the target point.
setSplitMethod(SelectedTag) - Method in class weka.classifiers.mi.MITI
Setter method.
setToleranceParameter(double) - Method in class weka.classifiers.mi.MISMO
Set the value of tolerance parameter.
setTopNAttributesToSplit(int) - Method in class weka.classifiers.mi.MITI
Setter method.
setTransformMethod(SelectedTag) - Method in class weka.classifiers.mi.SimpleMI
Set the method used in transformation.
setUnbiasedEstimate(boolean) - Method in class weka.classifiers.mi.MITI
Setter for unbiased estimate flag.
setUsingCutOff(boolean) - Method in class weka.classifiers.mi.TLD
Sets whether to use an empirical cutoff.
setUsingCutOff(boolean) - Method in class weka.classifiers.mi.TLDSimple
Sets whether to use an empirical cutoff.
setWeightMethod(SelectedTag) - Method in class weka.classifiers.mi.MIWrapper
The new method for weighting the instances.
SimpleMI - Class in weka.classifiers.mi
Reduces MI data into mono-instance data.
SimpleMI() - Constructor for class weka.classifiers.mi.SimpleMI
 
sortArray(double[]) - Method in class weka.classifiers.mi.MIOptimalBall
Sort the array.
sparseIndices() - Method in class weka.classifiers.mi.MISMO
Returns the indices in sparse format.
sparseWeights() - Method in class weka.classifiers.mi.MISMO
Returns the weights in sparse format.
Split - Class in weka.classifiers.mi.miti
Represents a split in the decision tree.
Split() - Constructor for class weka.classifiers.mi.miti.Split
 
split - Variable in class weka.classifiers.mi.miti.TreeNode
 
splitInstances(HashMap<Instance, Bag>, AlgorithmConfiguration, Random, boolean) - Method in class weka.classifiers.mi.miti.TreeNode
Splits the instances on this node into the best possible child nodes, according to the settings
SPLITMETHOD_GINI - Static variable in class weka.classifiers.mi.MITI
 
SPLITMETHOD_MAXBEPP - Static variable in class weka.classifiers.mi.MITI
 
SPLITMETHOD_SSBEPP - Static variable in class weka.classifiers.mi.MITI
 
splitMethodTipText() - Method in class weka.classifiers.mi.MITI
Help for split measure selection.
splitPoint - Variable in class weka.classifiers.mi.miti.Split
 
SSBEPP - Class in weka.classifiers.mi.miti
Implements the SSBEPP split selection measure.
SSBEPP() - Constructor for class weka.classifiers.mi.miti.SSBEPP
 
SufficientBagStatistics - Class in weka.classifiers.mi.miti
Class that maintains sufficient statistics at the bag level.
SufficientBagStatistics(List<Instance>, HashMap<Instance, Bag>, double) - Constructor for class weka.classifiers.mi.miti.SufficientBagStatistics
Sets up the object initially by assigning all cases to the right subset.
SufficientInstanceStatistics - Class in weka.classifiers.mi.miti
Class that maintains sufficient statistics at the instance level.
SufficientInstanceStatistics(List<Instance>, HashMap<Instance, Bag>) - Constructor for class weka.classifiers.mi.miti.SufficientInstanceStatistics
Constructs the object by initially assigning all instances to the right subset.
SufficientStatistics - Interface in weka.classifiers.mi.miti
Interface to be implemented by classes that maintain sufficient statistics.

T

TAGS_ALGORITHMTYPE - Static variable in class weka.classifiers.mi.MILR
the types of algorithms
TAGS_FILTER - Static variable in class weka.classifiers.mi.MDD
The filter to apply to the training data
TAGS_FILTER - Static variable in class weka.classifiers.mi.MIDD
The filter to apply to the training data
TAGS_FILTER - Static variable in class weka.classifiers.mi.MIEMDD
The filter to apply to the training data
TAGS_FILTER - Static variable in class weka.classifiers.mi.MIOptimalBall
The filter to apply to the training data
TAGS_FILTER - Static variable in class weka.classifiers.mi.MISMO
The filter to apply to the training data
TAGS_FILTER - Static variable in class weka.classifiers.mi.MISVM
The filter to apply to the training data
TAGS_FILTER - Static variable in class weka.classifiers.mi.QuickDDIterative
The filter to apply to the training data
TAGS_SPLITMETHOD - Static variable in class weka.classifiers.mi.MITI
 
TAGS_TESTMETHOD - Static variable in class weka.classifiers.mi.MIWrapper
the test methods
TAGS_TRANSFORMMETHOD - Static variable in class weka.classifiers.mi.SimpleMI
the transformation methods
target(double[], double[][], int, double[]) - Method in class weka.classifiers.mi.MINND
Compute the target function to minimize in gradient descent The formula is:
1/2*sum[i=1..p](f(X, Xi)-var(Y, Yi))^2

where p is the number of exemplars and Y is the class label.

TESTMETHOD_ARITHMETIC - Static variable in class weka.classifiers.mi.MIWrapper
arithmetic average
TESTMETHOD_GEOMETRIC - Static variable in class weka.classifiers.mi.MIWrapper
geometric average
TESTMETHOD_MAXPROB - Static variable in class weka.classifiers.mi.MIWrapper
max probability of positive bag
TLC - Class in weka.classifiers.mi
Implements basic two-level classification method for multi-instance data, without attribute selection.

For more information see:

Nils Weidmann, Eibe Frank, Bernhard Pfahringer: A two-level learning method for generalized multi-instance problems.
TLC() - Constructor for class weka.classifiers.mi.TLC
Constructor that sets default base learner.
TLD - Class in weka.classifiers.mi
Two-Level Distribution approach, changes the starting value of the searching algorithm, supplement the cut-off modification and check missing values.

For more information see:

Xin Xu (2003).
TLD() - Constructor for class weka.classifiers.mi.TLD
 
TLDSimple - Class in weka.classifiers.mi
A simpler version of TLD, mu random but sigma^2 fixed and estimated via data.

For more information see:

Xin Xu (2003).
TLDSimple() - Constructor for class weka.classifiers.mi.TLDSimple
 
toleranceParameterTipText() - Method in class weka.classifiers.mi.MISMO
Returns the tip text for this property
topNAttributesToSplitTipText() - Method in class weka.classifiers.mi.MITI
Help for top-N attributes to split
toString() - Method in class weka.classifiers.mi.MDD
Gets a string describing the classifier.
toString() - Method in class weka.classifiers.mi.MIBoost
Gets a string describing the classifier.
toString() - Method in class weka.classifiers.mi.MIDD
Gets a string describing the classifier.
toString() - Method in class weka.classifiers.mi.MIEMDD
Gets a string describing the classifier.
toString() - Method in class weka.classifiers.mi.MILR
Gets a string describing the classifier.
toString() - Method in class weka.classifiers.mi.MIRI
Returns string representing the rule set.
toString() - Method in class weka.classifiers.mi.MISMO
Prints out the classifier.
toString() - Method in class weka.classifiers.mi.MITI
Outputs tree as a string.
toString() - Method in class weka.classifiers.mi.MIWrapper
Gets a string describing the classifier.
toString() - Method in class weka.classifiers.mi.QuickDDIterative
Gets a string describing the classifier.
toString() - Method in class weka.classifiers.mi.SimpleMI
Gets a string describing the classifier.
toString() - Method in class weka.classifiers.mi.TLC
Returns a description of the classifier as a string.
toString() - Method in class weka.classifiers.mi.TLDSimple
Gets a string describing the classifier.
totalCountLeft() - Method in class weka.classifiers.mi.miti.SufficientBagStatistics
Number of cases on the left side.
totalCountLeft() - Method in class weka.classifiers.mi.miti.SufficientInstanceStatistics
Number of cases on the left side.
totalCountLeft() - Method in interface weka.classifiers.mi.miti.SufficientStatistics
The total number of cases on the left.
totalCountRight() - Method in class weka.classifiers.mi.miti.SufficientBagStatistics
Number of cases on the right side.
totalCountRight() - Method in class weka.classifiers.mi.miti.SufficientInstanceStatistics
Number of cases on the right side.
totalCountRight() - Method in interface weka.classifiers.mi.miti.SufficientStatistics
The total number of cases on the right.
transform(Instances) - Method in class weka.classifiers.mi.SimpleMI
Implements MITransform (3 type of transformation) 1.arithmatic average; 2.geometric centor; 3.merge minima and maxima attribute value together
TRANSFORMMETHOD_ARITHMETIC - Static variable in class weka.classifiers.mi.SimpleMI
arithmetic average
TRANSFORMMETHOD_GEOMETRIC - Static variable in class weka.classifiers.mi.SimpleMI
geometric average
TRANSFORMMETHOD_MINIMAX - Static variable in class weka.classifiers.mi.SimpleMI
using minimax combined features of a bag
transformMethodTipText() - Method in class weka.classifiers.mi.SimpleMI
Returns the tip text for this property
TreeNode - Class in weka.classifiers.mi.miti
Represents a node in the decision tree.
TreeNode(TreeNode, ArrayList<Instance>) - Constructor for class weka.classifiers.mi.miti.TreeNode
Creates node based on given collection of instances and parent node.
trimNegativeBranches() - Method in class weka.classifiers.mi.miti.TreeNode
Recursively removes all branches that do not contain a positive leaf.
turnChecksOff() - Method in class weka.classifiers.mi.MISMO
Turns off checks for missing values, etc.
turnChecksOn() - Method in class weka.classifiers.mi.MISMO
Turns on checks for missing values, etc.

U

unbiasedEstimate - Variable in class weka.classifiers.mi.miti.AlgorithmConfiguration
Determines whether an unbiased score is used to estimate the proportion of positives
unbiasedEstimateTipText() - Method in class weka.classifiers.mi.MITI
Help for unbiased estimate flag.
updateStats(Instance, HashMap<Instance, Bag>) - Method in class weka.classifiers.mi.miti.SufficientBagStatistics
Updates the sufficient statistics assuming a shift of instance i from the right of the split to the left
updateStats(Instance, HashMap<Instance, Bag>) - Method in class weka.classifiers.mi.miti.SufficientInstanceStatistics
Updates the sufficient statistics assuming a shift of instance i from the right of the split to the left
updateStats(Instance, HashMap<Instance, Bag>) - Method in interface weka.classifiers.mi.miti.SufficientStatistics
Method used to update the sufficient statistics by shifting an instance from one side to the other.
useBagStatistics - Variable in class weka.classifiers.mi.miti.AlgorithmConfiguration
Determines whether bag stats are used to score splits, or instance stats.
usingCutOffTipText() - Method in class weka.classifiers.mi.TLD
Returns the tip text for this property
usingCutOffTipText() - Method in class weka.classifiers.mi.TLDSimple
Returns the tip text for this property

W

weightMethodTipText() - Method in class weka.classifiers.mi.MIWrapper
Returns the tip text for this property
weka.classifiers.mi - package weka.classifiers.mi
 
weka.classifiers.mi.miti - package weka.classifiers.mi.miti
 
weka.classifiers.mi.supportVector - package weka.classifiers.mi.supportVector
 

Z

ZERO - Static variable in class weka.classifiers.mi.TLD
The very small number representing zero
ZERO - Static variable in class weka.classifiers.mi.TLDSimple
The very small number representing zero
A B C D E F G I K L M N P Q R S T U W Z 
Skip navigation links