public class MIRI extends MITI implements weka.core.OptionHandler, weka.core.AdditionalMeasureProducer
@inproceedings{Blockeel2005, author = {Hendrik Blockeel and David Page and Ashwin Srinivasan}, booktitle = {Proceedings of the International Conference on Machine Learning}, pages = {57-64}, publisher = {ACM}, title = {Multi-instance Tree Learning}, year = {2005} } @inproceedings{Bjerring2011, author = {Luke Bjerring and Eibe Frank}, booktitle = {Proceedings of the Australasian Joint Conference on Artificial Intelligence}, publisher = {Springer}, title = {Beyond Trees: Adopting MITI to Learn Rules and Ensemble Classifiers for Multi-instance Data}, year = {2011} }Valid options are:
-M [1|2|3] The method used to determine best split: 1. Gini; 2. MaxBEPP; 3. SSBEPP
-K [kBEPPConstant] The constant used in the tozero() hueristic
-L Scales the value of K to the size of the bags
-U Use unbiased estimate rather than BEPP, i.e. UEPP.
-B Uses the instances present for the bag counts at each node when splitting, weighted according to 1 - Ba ^ n, where n is the number of instances present which belong to the bag, and Ba is another parameter (default 0.5)
-Ba [multiplier] Multiplier for count influence of a bag based on the number of its instances
-A [number of attributes] The number of randomly selected attributes to split -1: All attributes -2: square root of the total number of attributes
-An [number of splits] The number of top scoring attribute splits to randomly pick from -1: All splits (completely random selection) -2: square root of the number of splits
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
SPLITMETHOD_GINI, SPLITMETHOD_MAXBEPP, SPLITMETHOD_SSBEPP, TAGS_SPLITMETHOD
Constructor and Description |
---|
MIRI() |
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(weka.core.Instances trainingData)
Generates the rule set based on the given training data.
|
double[] |
distributionForInstance(weka.core.Instance newBag)
Returns the distribution of "class probabilities" for a new bag.
|
java.util.Enumeration |
enumerateMeasures()
Returns an enumeration of the additional measure names.
|
double |
getMeasure(java.lang.String additionalMeasureName)
Returns the value of the named measure.
|
java.lang.String |
globalInfo()
Returns a string describing classifier
|
static void |
main(java.lang.String[] options)
Used to run the algorithm from the command-line.
|
java.lang.String |
toString()
Returns string representing the rule set.
|
attributesToSplitTipText, baTipText, bTipText, getAttributesToSplit, getB, getBa, getCapabilities, getK, getL, getMultiInstanceCapabilities, getOptions, getSplitMethod, getTechnicalInformation, getTopNAttributesToSplit, getUnbiasedEstimate, kTipText, listOptions, lTipText, setAttributesToSplit, setB, setBa, setK, setL, setOptions, setSplitMethod, setTopNAttributesToSplit, setUnbiasedEstimate, splitMethodTipText, topNAttributesToSplitTipText, unbiasedEstimateTipText
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, getRevision, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
public java.lang.String globalInfo()
globalInfo
in class MITI
public java.util.Enumeration enumerateMeasures()
enumerateMeasures
in interface weka.core.AdditionalMeasureProducer
enumerateMeasures
in class MITI
public double getMeasure(java.lang.String additionalMeasureName)
getMeasure
in interface weka.core.AdditionalMeasureProducer
getMeasure
in class MITI
additionalMeasureName
- the name of the measure to query for its valuejava.lang.IllegalArgumentException
- if the named measure is not supportedpublic void buildClassifier(weka.core.Instances trainingData) throws java.lang.Exception
buildClassifier
in interface weka.classifiers.Classifier
buildClassifier
in class MITI
java.lang.Exception
public double[] distributionForInstance(weka.core.Instance newBag) throws java.lang.Exception
distributionForInstance
in interface weka.classifiers.Classifier
distributionForInstance
in class MITI
java.lang.Exception
public java.lang.String toString()
public static void main(java.lang.String[] options)