public class MIRI extends MITI implements weka.core.OptionHandler, weka.core.AdditionalMeasureProducer
@inproceedings{Blockeel2005,
author = {Hendrik Blockeel and David Page and Ashwin Srinivasan},
booktitle = {Proceedings of the International Conference on Machine Learning},
pages = {57-64},
publisher = {ACM},
title = {Multi-instance Tree Learning},
year = {2005}
}
@inproceedings{Bjerring2011,
author = {Luke Bjerring and Eibe Frank},
booktitle = {Proceedings of the Australasian Joint Conference on Artificial Intelligence},
publisher = {Springer},
title = {Beyond Trees: Adopting MITI to Learn Rules and Ensemble Classifiers for Multi-instance Data},
year = {2011}
}
Valid options are:
-M [1|2|3] The method used to determine best split: 1. Gini; 2. MaxBEPP; 3. SSBEPP
-K [kBEPPConstant] The constant used in the tozero() hueristic
-L Scales the value of K to the size of the bags
-U Use unbiased estimate rather than BEPP, i.e. UEPP.
-B Uses the instances present for the bag counts at each node when splitting, weighted according to 1 - Ba ^ n, where n is the number of instances present which belong to the bag, and Ba is another parameter (default 0.5)
-Ba [multiplier] Multiplier for count influence of a bag based on the number of its instances
-A [number of attributes] The number of randomly selected attributes to split -1: All attributes -2: square root of the total number of attributes
-An [number of splits] The number of top scoring attribute splits to randomly pick from -1: All splits (completely random selection) -2: square root of the number of splits
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
SPLITMETHOD_GINI, SPLITMETHOD_MAXBEPP, SPLITMETHOD_SSBEPP, TAGS_SPLITMETHOD| Constructor and Description |
|---|
MIRI() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(weka.core.Instances trainingData)
Generates the rule set based on the given training data.
|
double[] |
distributionForInstance(weka.core.Instance newBag)
Returns the distribution of "class probabilities" for a new bag.
|
java.util.Enumeration |
enumerateMeasures()
Returns an enumeration of the additional measure names.
|
double |
getMeasure(java.lang.String additionalMeasureName)
Returns the value of the named measure.
|
java.lang.String |
globalInfo()
Returns a string describing classifier
|
static void |
main(java.lang.String[] options)
Used to run the algorithm from the command-line.
|
java.lang.String |
toString()
Returns string representing the rule set.
|
attributesToSplitTipText, baTipText, bTipText, getAttributesToSplit, getB, getBa, getCapabilities, getK, getL, getMultiInstanceCapabilities, getOptions, getSplitMethod, getTechnicalInformation, getTopNAttributesToSplit, getUnbiasedEstimate, kTipText, listOptions, lTipText, setAttributesToSplit, setB, setBa, setK, setL, setOptions, setSplitMethod, setTopNAttributesToSplit, setUnbiasedEstimate, splitMethodTipText, topNAttributesToSplitTipText, unbiasedEstimateTipTextbatchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, getRevision, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacespublic java.lang.String globalInfo()
globalInfo in class MITIpublic java.util.Enumeration enumerateMeasures()
enumerateMeasures in interface weka.core.AdditionalMeasureProducerenumerateMeasures in class MITIpublic double getMeasure(java.lang.String additionalMeasureName)
getMeasure in interface weka.core.AdditionalMeasureProducergetMeasure in class MITIadditionalMeasureName - the name of the measure to query for its valuejava.lang.IllegalArgumentException - if the named measure is not supportedpublic void buildClassifier(weka.core.Instances trainingData)
throws java.lang.Exception
buildClassifier in interface weka.classifiers.ClassifierbuildClassifier in class MITIjava.lang.Exceptionpublic double[] distributionForInstance(weka.core.Instance newBag)
throws java.lang.Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class MITIjava.lang.Exceptionpublic java.lang.String toString()
public static void main(java.lang.String[] options)