public class TLD
extends weka.classifiers.RandomizableClassifier
implements weka.core.OptionHandler, weka.core.MultiInstanceCapabilitiesHandler, weka.core.TechnicalInformationHandler
@mastersthesis{Xu2003, address = {Hamilton, NZ}, author = {Xin Xu}, note = {0657.594}, school = {University of Waikato}, title = {Statistical learning in multiple instance problem}, year = {2003} }Valid options are:
-C Set whether or not use empirical log-odds cut-off instead of 0
-R <numOfRuns> Set the number of multiple runs needed for searching the MLE.
-S <num> Random number seed. (default 1)
Modifier and Type | Field and Description |
---|---|
static double |
ZERO
The very small number representing zero
|
Constructor and Description |
---|
TLD() |
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(weka.core.Instances exs) |
double |
classifyInstance(weka.core.Instance ex) |
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
weka.core.Capabilities |
getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance classifier for the
relational data.
|
int |
getNumRuns()
Returns the number of runs to perform.
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
boolean |
getUsingCutOff()
Returns whether an empirical cutoff is used
|
java.lang.String |
globalInfo()
Returns a string describing this filter
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] args)
Main method for testing.
|
java.lang.String |
numRunsTipText()
Returns the tip text for this property
|
void |
setNumRuns(int numRuns)
Sets the number of runs to perform.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setUsingCutOff(boolean cutOff)
Sets whether to use an empirical cutoff.
|
java.lang.String |
usingCutOffTipText()
Returns the tip text for this property
|
batchSizeTipText, debugTipText, distributionForInstance, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
public java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface weka.core.TechnicalInformationHandler
public weka.core.Capabilities getCapabilities()
getCapabilities
in interface weka.classifiers.Classifier
getCapabilities
in interface weka.core.CapabilitiesHandler
getCapabilities
in class weka.classifiers.AbstractClassifier
public weka.core.Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities
in interface weka.core.MultiInstanceCapabilitiesHandler
Capabilities
public void buildClassifier(weka.core.Instances exs) throws java.lang.Exception
buildClassifier
in interface weka.classifiers.Classifier
exs
- the training exemplarsjava.lang.Exception
- if the model cannot be built properlypublic double classifyInstance(weka.core.Instance ex) throws java.lang.Exception
classifyInstance
in interface weka.classifiers.Classifier
classifyInstance
in class weka.classifiers.AbstractClassifier
ex
- the given test exemplarjava.lang.Exception
- if the exemplar could not be classified successfullypublic java.util.Enumeration<weka.core.Option> listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.classifiers.RandomizableClassifier
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-C Set whether or not use empirical log-odds cut-off instead of 0
-R <numOfRuns> Set the number of multiple runs needed for searching the MLE.
-S <num> Random number seed. (default 1)
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.classifiers.RandomizableClassifier
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.classifiers.RandomizableClassifier
public java.lang.String numRunsTipText()
public void setNumRuns(int numRuns)
numRuns
- the number of runs to performpublic int getNumRuns()
public java.lang.String usingCutOffTipText()
public void setUsingCutOff(boolean cutOff)
cutOff
- whether to use an empirical cutoffpublic boolean getUsingCutOff()
public java.lang.String getRevision()
getRevision
in interface weka.core.RevisionHandler
getRevision
in class weka.classifiers.AbstractClassifier
public static void main(java.lang.String[] args)
args
- the options for the classifier