public class TLC
extends weka.classifiers.SingleClassifierEnhancer
implements weka.core.TechnicalInformationHandler, weka.core.MultiInstanceCapabilitiesHandler
BibTeX:
@inproceedings{Weidmann2003,
author = {Nils Weidmann and Eibe Frank and Bernhard Pfahringer},
booktitle = {Fourteenth European Conference on Machine Learning},
pages = {468-479},
publisher = {Springer},
title = {A two-level learning method for generalized multi-instance problems},
year = {2003}
}
@inproceedings{FrankAndPfahringer203,
author = {Eibe Frank and Bernhard Pfahringer},
booktitle = {AI 2013: Advances in Artificial Intelligence},
pages = {362-373},
publisher = {Springer},
title = {Propositionalisation of Multi-instance Data Using Random Forests},
year = {2013}
}
Valid options are:
-P "<name and options of partition generator>" Partition generator to use, including options. Quotes are needed when options are specified. (default: weka.classifiers.trees.J48)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.meta.LogitBoost)
Options specific to classifier weka.classifiers.meta.LogitBoost:
-Q Use resampling instead of reweighting for boosting.
-P <percent> Percentage of weight mass to base training on. (default 100, reduce to around 90 speed up)
-F <num> Number of folds for internal cross-validation. (default 0 -- no cross-validation)
-R <num> Number of runs for internal cross-validation. (default 1)
-L <num> Threshold on the improvement of the likelihood. (default -Double.MAX_VALUE)
-H <num> Shrinkage parameter. (default 1)
-S <num> Random number seed. (default 1)
-I <num> Number of iterations. (default 10)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.DecisionStump)
Options specific to classifier weka.classifiers.trees.DecisionStump:
-D If set, classifier is run in debug mode and may output additional info to the console
Options specific to partition generator weka.classifiers.trees.J48:
-U Use unpruned tree.
-O Do not collapse tree.
-C <pruning confidence> Set confidence threshold for pruning. (default 0.25)
-M <minimum number of instances> Set minimum number of instances per leaf. (default 2)
-R Use reduced error pruning.
-N <number of folds> Set number of folds for reduced error pruning. One fold is used as pruning set. (default 3)
-B Use binary splits only.
-S Don't perform subtree raising.
-L Do not clean up after the tree has been built.
-A Laplace smoothing for predicted probabilities.
-J Do not use MDL correction for info gain on numeric attributes.
-Q <seed> Seed for random data shuffling (default 1).
| Constructor and Description |
|---|
TLC()
Constructor that sets default base learner.
|
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(weka.core.Instances data)
Builds the classifier from the given training data.
|
double[] |
distributionForInstance(weka.core.Instance inst)
Returns class probabilities for the given instance.
|
weka.core.Capabilities |
getCapabilities()
Returns the Capabilities of this filter.
|
weka.core.Capabilities |
getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance filter for the relational
data (i.e., the bags).
|
java.lang.String[] |
getOptions()
Gets the current settings of the filter.
|
weka.core.PartitionGenerator |
getPartitionGenerator()
Get the generator used by this filter
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing this filter
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] options)
Main method for running this class from the command-line.
|
java.lang.String |
partitionGeneratorTipText()
Returns a description of this option suitable for display as a tip text in
the gui.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setPartitionGenerator(weka.core.PartitionGenerator newPartitionGenerator)
Set the generator for use in filtering
|
java.lang.String |
toString()
Returns a description of the classifier as a string.
|
classifierTipText, getClassifier, postExecution, preExecution, setClassifierbatchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacespublic java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic java.lang.String partitionGeneratorTipText()
public void setPartitionGenerator(weka.core.PartitionGenerator newPartitionGenerator)
newPartitionGenerator - the generator to usepublic weka.core.PartitionGenerator getPartitionGenerator()
public java.util.Enumeration<weka.core.Option> listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.SingleClassifierEnhancerpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-P "<name and options of partition generator>" Partition generator to use, including options. Quotes are needed when options are specified. (default: weka.classifiers.trees.J48)
-W Full name of base classifier. (default: weka.classifiers.meta.LogitBoost)
Options specific to classifier weka.classifiers.meta.LogitBoost:
-Q Use resampling instead of reweighting for boosting.
-P <percent> Percentage of weight mass to base training on. (default 100, reduce to around 90 speed up)
-F <num> Number of folds for internal cross-validation. (default 0 -- no cross-validation)
-R <num> Number of runs for internal cross-validation. (default 1)
-L <num> Threshold on the improvement of the likelihood. (default -Double.MAX_VALUE)
-H <num> Shrinkage parameter. (default 1)
-S <num> Random number seed. (default 1)
-I <num> Number of iterations. (default 10)
-W Full name of base classifier. (default: weka.classifiers.trees.DecisionStump)
Options specific to classifier weka.classifiers.trees.DecisionStump:
-D If set, classifier is run in debug mode and may output additional info to the console
Options specific to partition generator weka.classifiers.trees.J48:
-U Use unpruned tree.
-O Do not collapse tree.
-C <pruning confidence> Set confidence threshold for pruning. (default 0.25)
-M <minimum number of instances> Set minimum number of instances per leaf. (default 2)
-R Use reduced error pruning.
-N <number of folds> Set number of folds for reduced error pruning. One fold is used as pruning set. (default 3)
-B Use binary splits only.
-S Don't perform subtree raising.
-L Do not clean up after the tree has been built.
-A Laplace smoothing for predicted probabilities.
-J Do not use MDL correction for info gain on numeric attributes.
-Q <seed> Seed for random data shuffling (default 1).Options after the -- are passed on to the clusterer.
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.SingleClassifierEnhanceroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.SingleClassifierEnhancerpublic void buildClassifier(weka.core.Instances data)
throws java.lang.Exception
buildClassifier in interface weka.classifiers.Classifierjava.lang.Exceptionpublic java.lang.String toString()
toString in class java.lang.Objectpublic double[] distributionForInstance(weka.core.Instance inst)
throws java.lang.Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifierjava.lang.Exceptionpublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.classifiers.AbstractClassifierpublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.SingleClassifierEnhancerCapabilitiespublic weka.core.Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities in interface weka.core.MultiInstanceCapabilitiesHandlerCapabilitiespublic static void main(java.lang.String[] options)