public class SimpleMI
extends weka.classifiers.SingleClassifierEnhancer
implements weka.core.OptionHandler, weka.core.MultiInstanceCapabilitiesHandler
-M [1|2|3] The method used in transformation: 1.arithmatic average; 2.geometric centor; 3.using minimax combined features of a bag (default: 1) Method 3: Define s to be the vector of the coordinate-wise maxima and minima of X, ie., s(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform the exemplars into mono-instance which contains attributes s(X)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the console
| Modifier and Type | Field and Description |
|---|---|
static weka.core.Tag[] |
TAGS_TRANSFORMMETHOD
the transformation methods
|
static int |
TRANSFORMMETHOD_ARITHMETIC
arithmetic average
|
static int |
TRANSFORMMETHOD_GEOMETRIC
geometric average
|
static int |
TRANSFORMMETHOD_MINIMAX
using minimax combined features of a bag
|
| Constructor and Description |
|---|
SimpleMI() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(weka.core.Instances train)
Builds the classifier
|
double[] |
distributionForInstance(weka.core.Instance newBag)
Computes the distribution for a given exemplar
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
weka.core.Capabilities |
getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance classifier for the
relational data.
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.SelectedTag |
getTransformMethod()
Get the method used in transformation.
|
java.lang.String |
globalInfo()
Returns a string describing this filter
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
static double[] |
minimax(weka.core.Instances data,
int attIndex)
Get the minimal and maximal value of a certain attribute in a certain data
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setTransformMethod(weka.core.SelectedTag newMethod)
Set the method used in transformation.
|
java.lang.String |
toString()
Gets a string describing the classifier.
|
weka.core.Instances |
transform(weka.core.Instances train)
Implements MITransform (3 type of transformation) 1.arithmatic average;
2.geometric centor; 3.merge minima and maxima attribute value together
|
java.lang.String |
transformMethodTipText()
Returns the tip text for this property
|
classifierTipText, getClassifier, postExecution, preExecution, setClassifierbatchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacespublic static final int TRANSFORMMETHOD_ARITHMETIC
public static final int TRANSFORMMETHOD_GEOMETRIC
public static final int TRANSFORMMETHOD_MINIMAX
public static final weka.core.Tag[] TAGS_TRANSFORMMETHOD
public java.lang.String globalInfo()
public java.util.Enumeration<weka.core.Option> listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.SingleClassifierEnhancerpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-M [1|2|3] The method used in transformation: 1.arithmatic average; 2.geometric centor; 3.using minimax combined features of a bag (default: 1) Method 3: Define s to be the vector of the coordinate-wise maxima and minima of X, ie., s(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform the exemplars into mono-instance which contains attributes s(X)
-W Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
Options specific to classifier weka.classifiers.rules.ZeroR:
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.SingleClassifierEnhanceroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.SingleClassifierEnhancerpublic java.lang.String transformMethodTipText()
public void setTransformMethod(weka.core.SelectedTag newMethod)
newMethod - the index of method to use.public weka.core.SelectedTag getTransformMethod()
public weka.core.Instances transform(weka.core.Instances train)
throws java.lang.Exception
train - the multi-instance dataset (with relational attribute)java.lang.Exception - if the transformation failspublic static double[] minimax(weka.core.Instances data,
int attIndex)
data - the dataattIndex - the index of the attributepublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.SingleClassifierEnhancerpublic weka.core.Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities in interface weka.core.MultiInstanceCapabilitiesHandlerCapabilitiespublic void buildClassifier(weka.core.Instances train)
throws java.lang.Exception
buildClassifier in interface weka.classifiers.Classifiertrain - the training data to be used for generating the boosted
classifier.java.lang.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(weka.core.Instance newBag)
throws java.lang.Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifiernewBag - the exemplar for which distribution is computedjava.lang.Exception - if the distribution can't be computed successfullypublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.classifiers.AbstractClassifierpublic static void main(java.lang.String[] argv)
argv - should contain the command line arguments to the scheme (see
Evaluation)