public class QuickDDIterative
extends weka.classifiers.AbstractClassifier
implements weka.core.OptionHandler, weka.core.MultiInstanceCapabilitiesHandler, weka.core.TechnicalInformationHandler, weka.core.WeightedInstancesHandler
@inproceedings{Foulds2010,
author = {James R. Foulds and Eibe Frank},
booktitle = {Proc 13th International Conference on Discovery Science},
pages = {102-116},
publisher = {Springer},
title = {Speeding up and boosting diverse density learning},
year = {2010}
}
Valid options are:
-D Turn on debugging output.
-N <num> Whether to 0=normalize/1=standardize/2=neither. (default 1=standardize)
-S <num> The initial scaling factor (constant for all attributes).
-M <num> Maximum probability of negative class (default 1).
-I <num> The maximum number of iterations to perform (default 1).
-C Consider both classes as positive classes. (default: only last class).
| Modifier and Type | Field and Description |
|---|---|
static int |
FILTER_NONE
No normalization/standardization
|
static int |
FILTER_NORMALIZE
Normalize training data
|
static int |
FILTER_STANDARDIZE
Standardize training data
|
static weka.core.Tag[] |
TAGS_FILTER
The filter to apply to the training data
|
| Constructor and Description |
|---|
QuickDDIterative() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(weka.core.Instances train)
Builds the classifier
|
java.lang.String |
considerBothClassesTipText()
Returns the tip text for this property
|
double[] |
distributionForInstance(weka.core.Instance exmp)
Computes the distribution for a given exemplar
|
java.lang.String |
filterTypeTipText()
Returns the tip text for this property
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
boolean |
getConsiderBothClasses()
Get wether to consider both classes as "positive" class in turn.
|
weka.core.SelectedTag |
getFilterType()
Gets how the training data will be transformed.
|
int |
getMaxIterations() |
double |
getMaxProbNegativeClass()
Get the maximum probability for the negative class.
|
weka.core.Capabilities |
getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance classifier for the
relational data.
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string
|
double |
getScalingFactor()
Get the scaling factor for the Gaussian-like function at the target point.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing this filter
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
maxIterationsTipText()
Returns the tip text for this property
|
java.lang.String |
maxProbNegativeClassTipText()
Returns the tip text for this property
|
java.lang.String |
scalingFactorTipText()
Returns the tip text for this property
|
void |
setConsiderBothClasses(boolean b)
Set wether to consider both classes as "positive" class in turn.
|
void |
setFilterType(weka.core.SelectedTag newType)
Sets how the training data will be transformed.
|
void |
setMaxIterations(int maxIterations) |
void |
setMaxProbNegativeClass(double r)
Set the maximum probability for the negative class.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setScalingFactor(double scale)
Set the scaling factor for the Gaussian-like function at the target point.
|
java.lang.String |
toString()
Gets a string describing the classifier.
|
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacespublic static final int FILTER_NORMALIZE
public static final int FILTER_STANDARDIZE
public static final int FILTER_NONE
public static final weka.core.Tag[] TAGS_FILTER
public java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic java.util.Enumeration<weka.core.Option> listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.AbstractClassifierpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-N <num> Whether to 0=normalize/1=standardize/2=neither. (default 1=standardize)
-S <num> The initial scaling factor (constant for all attributes).
-M <num> Maximum probability of negative class (default 1).
-I <num> The maximum number of iterations to perform (default 1).
-C Consider both classes as positive classes. (default: only last class).
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.AbstractClassifieroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.AbstractClassifierpublic java.lang.String filterTypeTipText()
public weka.core.SelectedTag getFilterType()
public void setFilterType(weka.core.SelectedTag newType)
newType - the new filtering modepublic java.lang.String scalingFactorTipText()
public void setScalingFactor(double scale)
scale - public double getScalingFactor()
public java.lang.String maxProbNegativeClassTipText()
public void setMaxProbNegativeClass(double r)
public double getMaxProbNegativeClass()
public java.lang.String considerBothClassesTipText()
public void setConsiderBothClasses(boolean b)
public boolean getConsiderBothClasses()
public java.lang.String maxIterationsTipText()
public void setMaxIterations(int maxIterations)
m_maxIterations - the m_maxIterations to setpublic int getMaxIterations()
public weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.AbstractClassifierpublic weka.core.Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities in interface weka.core.MultiInstanceCapabilitiesHandlerCapabilitiespublic void buildClassifier(weka.core.Instances train)
throws java.lang.Exception
buildClassifier in interface weka.classifiers.Classifiertrain - the training data to be used for generating the boosted
classifier.java.lang.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(weka.core.Instance exmp)
throws java.lang.Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifierexmp - the exemplar for which distribution is computedjava.lang.Exception - if the distribution can't be computed successfullypublic java.lang.String toString()
toString in class java.lang.Objectpublic static void main(java.lang.String[] argv)
argv - should contain the command line arguments to the scheme (see
Evaluation)public java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.classifiers.AbstractClassifier