public class QuickDDIterative
extends weka.classifiers.AbstractClassifier
implements weka.core.OptionHandler, weka.core.MultiInstanceCapabilitiesHandler, weka.core.TechnicalInformationHandler, weka.core.WeightedInstancesHandler
@inproceedings{Foulds2010, author = {James R. Foulds and Eibe Frank}, booktitle = {Proc 13th International Conference on Discovery Science}, pages = {102-116}, publisher = {Springer}, title = {Speeding up and boosting diverse density learning}, year = {2010} }Valid options are:
-D Turn on debugging output.
-N <num> Whether to 0=normalize/1=standardize/2=neither. (default 1=standardize)
-S <num> The initial scaling factor (constant for all attributes).
-M <num> Maximum probability of negative class (default 1).
-I <num> The maximum number of iterations to perform (default 1).
-C Consider both classes as positive classes. (default: only last class).
Modifier and Type | Field and Description |
---|---|
static int |
FILTER_NONE
No normalization/standardization
|
static int |
FILTER_NORMALIZE
Normalize training data
|
static int |
FILTER_STANDARDIZE
Standardize training data
|
static weka.core.Tag[] |
TAGS_FILTER
The filter to apply to the training data
|
Constructor and Description |
---|
QuickDDIterative() |
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(weka.core.Instances train)
Builds the classifier
|
java.lang.String |
considerBothClassesTipText()
Returns the tip text for this property
|
double[] |
distributionForInstance(weka.core.Instance exmp)
Computes the distribution for a given exemplar
|
java.lang.String |
filterTypeTipText()
Returns the tip text for this property
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
boolean |
getConsiderBothClasses()
Get wether to consider both classes as "positive" class in turn.
|
weka.core.SelectedTag |
getFilterType()
Gets how the training data will be transformed.
|
int |
getMaxIterations() |
double |
getMaxProbNegativeClass()
Get the maximum probability for the negative class.
|
weka.core.Capabilities |
getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance classifier for the
relational data.
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string
|
double |
getScalingFactor()
Get the scaling factor for the Gaussian-like function at the target point.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing this filter
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
maxIterationsTipText()
Returns the tip text for this property
|
java.lang.String |
maxProbNegativeClassTipText()
Returns the tip text for this property
|
java.lang.String |
scalingFactorTipText()
Returns the tip text for this property
|
void |
setConsiderBothClasses(boolean b)
Set wether to consider both classes as "positive" class in turn.
|
void |
setFilterType(weka.core.SelectedTag newType)
Sets how the training data will be transformed.
|
void |
setMaxIterations(int maxIterations) |
void |
setMaxProbNegativeClass(double r)
Set the maximum probability for the negative class.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setScalingFactor(double scale)
Set the scaling factor for the Gaussian-like function at the target point.
|
java.lang.String |
toString()
Gets a string describing the classifier.
|
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
public static final int FILTER_NORMALIZE
public static final int FILTER_STANDARDIZE
public static final int FILTER_NONE
public static final weka.core.Tag[] TAGS_FILTER
public java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface weka.core.TechnicalInformationHandler
public java.util.Enumeration<weka.core.Option> listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.classifiers.AbstractClassifier
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-N <num> Whether to 0=normalize/1=standardize/2=neither. (default 1=standardize)
-S <num> The initial scaling factor (constant for all attributes).
-M <num> Maximum probability of negative class (default 1).
-I <num> The maximum number of iterations to perform (default 1).
-C Consider both classes as positive classes. (default: only last class).
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.classifiers.AbstractClassifier
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.classifiers.AbstractClassifier
public java.lang.String filterTypeTipText()
public weka.core.SelectedTag getFilterType()
public void setFilterType(weka.core.SelectedTag newType)
newType
- the new filtering modepublic java.lang.String scalingFactorTipText()
public void setScalingFactor(double scale)
scale
- public double getScalingFactor()
public java.lang.String maxProbNegativeClassTipText()
public void setMaxProbNegativeClass(double r)
public double getMaxProbNegativeClass()
public java.lang.String considerBothClassesTipText()
public void setConsiderBothClasses(boolean b)
public boolean getConsiderBothClasses()
public java.lang.String maxIterationsTipText()
public void setMaxIterations(int maxIterations)
m_maxIterations
- the m_maxIterations to setpublic int getMaxIterations()
public weka.core.Capabilities getCapabilities()
getCapabilities
in interface weka.classifiers.Classifier
getCapabilities
in interface weka.core.CapabilitiesHandler
getCapabilities
in class weka.classifiers.AbstractClassifier
public weka.core.Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities
in interface weka.core.MultiInstanceCapabilitiesHandler
Capabilities
public void buildClassifier(weka.core.Instances train) throws java.lang.Exception
buildClassifier
in interface weka.classifiers.Classifier
train
- the training data to be used for generating the boosted
classifier.java.lang.Exception
- if the classifier could not be built successfullypublic double[] distributionForInstance(weka.core.Instance exmp) throws java.lang.Exception
distributionForInstance
in interface weka.classifiers.Classifier
distributionForInstance
in class weka.classifiers.AbstractClassifier
exmp
- the exemplar for which distribution is computedjava.lang.Exception
- if the distribution can't be computed successfullypublic java.lang.String toString()
toString
in class java.lang.Object
public static void main(java.lang.String[] argv)
argv
- should contain the command line arguments to the scheme (see
Evaluation)public java.lang.String getRevision()
getRevision
in interface weka.core.RevisionHandler
getRevision
in class weka.classifiers.AbstractClassifier