public class TLDSimple
extends weka.classifiers.RandomizableClassifier
implements weka.core.OptionHandler, weka.core.MultiInstanceCapabilitiesHandler, weka.core.TechnicalInformationHandler
@mastersthesis{Xu2003,
address = {Hamilton, NZ},
author = {Xin Xu},
note = {0657.594},
school = {University of Waikato},
title = {Statistical learning in multiple instance problem},
year = {2003}
}
Valid options are:
-C Set whether or not use empirical log-odds cut-off instead of 0
-R <numOfRuns> Set the number of multiple runs needed for searching the MLE.
-S <num> Random number seed. (default 1)
| Modifier and Type | Field and Description |
|---|---|
static double |
ZERO
The very small number representing zero
|
| Constructor and Description |
|---|
TLDSimple() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(weka.core.Instances exs) |
double |
classifyInstance(weka.core.Instance ex) |
double[] |
distributionForInstance(weka.core.Instance ex)
Computes the distribution for a given exemplar
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
weka.core.Capabilities |
getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance classifier for the
relational data.
|
int |
getNumRuns()
Returns the number of runs to perform.
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
boolean |
getUsingCutOff()
Returns whether an empirical cutoff is used
|
java.lang.String |
globalInfo()
Returns a string describing this filter
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] args)
Main method for testing.
|
java.lang.String |
numRunsTipText()
Returns the tip text for this property
|
void |
setNumRuns(int numRuns)
Sets the number of runs to perform.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setUsingCutOff(boolean cutOff)
Sets whether to use an empirical cutoff.
|
java.lang.String |
toString()
Gets a string describing the classifier.
|
java.lang.String |
usingCutOffTipText()
Returns the tip text for this property
|
batchSizeTipText, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacespublic java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.AbstractClassifierpublic weka.core.Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities in interface weka.core.MultiInstanceCapabilitiesHandlerCapabilitiespublic void buildClassifier(weka.core.Instances exs)
throws java.lang.Exception
buildClassifier in interface weka.classifiers.Classifierexs - the training exemplarsjava.lang.Exception - if the model cannot be built properlypublic double classifyInstance(weka.core.Instance ex)
throws java.lang.Exception
classifyInstance in interface weka.classifiers.ClassifierclassifyInstance in class weka.classifiers.AbstractClassifierex - the given test exemplarjava.lang.Exception - if the exemplar could not be classified successfullypublic double[] distributionForInstance(weka.core.Instance ex)
throws java.lang.Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifierex - the exemplar for which distribution is computedjava.lang.Exception - if the distribution can't be computed successfullypublic java.util.Enumeration<weka.core.Option> listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.RandomizableClassifierpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-C Set whether or not use empirical log-odds cut-off instead of 0
-R <numOfRuns> Set the number of multiple runs needed for searching the MLE.
-S <num> Random number seed. (default 1)
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.RandomizableClassifieroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.RandomizableClassifierpublic java.lang.String numRunsTipText()
public void setNumRuns(int numRuns)
numRuns - the number of runs to performpublic int getNumRuns()
public java.lang.String usingCutOffTipText()
public void setUsingCutOff(boolean cutOff)
cutOff - whether to use an empirical cutoffpublic boolean getUsingCutOff()
public java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.classifiers.AbstractClassifierpublic static void main(java.lang.String[] args)
args - the options for the classifier