public class MIBoost
extends weka.classifiers.SingleClassifierEnhancer
implements weka.core.OptionHandler, weka.core.MultiInstanceCapabilitiesHandler, weka.core.TechnicalInformationHandler
@inproceedings{Freund1996,
address = {San Francisco},
author = {Yoav Freund and Robert E. Schapire},
booktitle = {Thirteenth International Conference on Machine Learning},
pages = {148-156},
publisher = {Morgan Kaufmann},
title = {Experiments with a new boosting algorithm},
year = {1996}
}
Valid options are:
-B <num> The number of bins in discretization (default 0, no discretization)
-R <num> Maximum number of boost iterations. (default 10)
-W <class name> Full name of classifier to boost. eg: weka.classifiers.bayes.NaiveBayes
| Constructor and Description |
|---|
MIBoost() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(weka.core.Instances exps)
Builds the classifier
|
java.lang.String |
discretizeBinTipText()
Returns the tip text for this property
|
double[] |
distributionForInstance(weka.core.Instance exmp)
Computes the distribution for a given exemplar
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
int |
getDiscretizeBin()
Get the number of bins in discretization
|
int |
getMaxIterations()
Get the maximum number of boost iterations
|
weka.core.Capabilities |
getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance classifier for the
relational data.
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing this filter
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
maxIterationsTipText()
Returns the tip text for this property
|
void |
setDiscretizeBin(int bin)
Set the number of bins in discretization
|
void |
setMaxIterations(int maxIterations)
Set the maximum number of boost iterations
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
java.lang.String |
toString()
Gets a string describing the classifier.
|
classifierTipText, getClassifier, postExecution, preExecution, setClassifierbatchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacespublic java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic java.util.Enumeration<weka.core.Option> listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.SingleClassifierEnhancerpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-B <num> The number of bins in discretization (default 0, no discretization)
-R <num> Maximum number of boost iterations. (default 10)
-W <class name> Full name of classifier to boost. eg: weka.classifiers.bayes.NaiveBayes
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.SingleClassifierEnhanceroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.SingleClassifierEnhancerpublic java.lang.String maxIterationsTipText()
public void setMaxIterations(int maxIterations)
maxIterations - the maximum number of boost iterationspublic int getMaxIterations()
public java.lang.String discretizeBinTipText()
public void setDiscretizeBin(int bin)
bin - the number of bins in discretizationpublic int getDiscretizeBin()
public weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.SingleClassifierEnhancerpublic weka.core.Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities in interface weka.core.MultiInstanceCapabilitiesHandlerCapabilitiespublic void buildClassifier(weka.core.Instances exps)
throws java.lang.Exception
buildClassifier in interface weka.classifiers.Classifierexps - the training data to be used for generating the boosted
classifier.java.lang.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(weka.core.Instance exmp)
throws java.lang.Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifierexmp - the exemplar for which distribution is computedjava.lang.Exception - if the distribution can't be computed successfullypublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.classifiers.AbstractClassifierpublic static void main(java.lang.String[] argv)
argv - should contain the command line arguments to the scheme (see
Evaluation)