public class MIBoost
extends weka.classifiers.SingleClassifierEnhancer
implements weka.core.OptionHandler, weka.core.MultiInstanceCapabilitiesHandler, weka.core.TechnicalInformationHandler
@inproceedings{Freund1996, address = {San Francisco}, author = {Yoav Freund and Robert E. Schapire}, booktitle = {Thirteenth International Conference on Machine Learning}, pages = {148-156}, publisher = {Morgan Kaufmann}, title = {Experiments with a new boosting algorithm}, year = {1996} }Valid options are:
-B <num> The number of bins in discretization (default 0, no discretization)
-R <num> Maximum number of boost iterations. (default 10)
-W <class name> Full name of classifier to boost. eg: weka.classifiers.bayes.NaiveBayes
Constructor and Description |
---|
MIBoost() |
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(weka.core.Instances exps)
Builds the classifier
|
java.lang.String |
discretizeBinTipText()
Returns the tip text for this property
|
double[] |
distributionForInstance(weka.core.Instance exmp)
Computes the distribution for a given exemplar
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
int |
getDiscretizeBin()
Get the number of bins in discretization
|
int |
getMaxIterations()
Get the maximum number of boost iterations
|
weka.core.Capabilities |
getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance classifier for the
relational data.
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing this filter
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
maxIterationsTipText()
Returns the tip text for this property
|
void |
setDiscretizeBin(int bin)
Set the number of bins in discretization
|
void |
setMaxIterations(int maxIterations)
Set the maximum number of boost iterations
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
java.lang.String |
toString()
Gets a string describing the classifier.
|
classifierTipText, getClassifier, postExecution, preExecution, setClassifier
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
public java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface weka.core.TechnicalInformationHandler
public java.util.Enumeration<weka.core.Option> listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.classifiers.SingleClassifierEnhancer
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-B <num> The number of bins in discretization (default 0, no discretization)
-R <num> Maximum number of boost iterations. (default 10)
-W <class name> Full name of classifier to boost. eg: weka.classifiers.bayes.NaiveBayes
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.classifiers.SingleClassifierEnhancer
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.classifiers.SingleClassifierEnhancer
public java.lang.String maxIterationsTipText()
public void setMaxIterations(int maxIterations)
maxIterations
- the maximum number of boost iterationspublic int getMaxIterations()
public java.lang.String discretizeBinTipText()
public void setDiscretizeBin(int bin)
bin
- the number of bins in discretizationpublic int getDiscretizeBin()
public weka.core.Capabilities getCapabilities()
getCapabilities
in interface weka.classifiers.Classifier
getCapabilities
in interface weka.core.CapabilitiesHandler
getCapabilities
in class weka.classifiers.SingleClassifierEnhancer
public weka.core.Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities
in interface weka.core.MultiInstanceCapabilitiesHandler
Capabilities
public void buildClassifier(weka.core.Instances exps) throws java.lang.Exception
buildClassifier
in interface weka.classifiers.Classifier
exps
- the training data to be used for generating the boosted
classifier.java.lang.Exception
- if the classifier could not be built successfullypublic double[] distributionForInstance(weka.core.Instance exmp) throws java.lang.Exception
distributionForInstance
in interface weka.classifiers.Classifier
distributionForInstance
in class weka.classifiers.AbstractClassifier
exmp
- the exemplar for which distribution is computedjava.lang.Exception
- if the distribution can't be computed successfullypublic java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String getRevision()
getRevision
in interface weka.core.RevisionHandler
getRevision
in class weka.classifiers.AbstractClassifier
public static void main(java.lang.String[] argv)
argv
- should contain the command line arguments to the scheme (see
Evaluation)