public class MILR
extends weka.classifiers.AbstractClassifier
implements weka.core.OptionHandler, weka.core.MultiInstanceCapabilitiesHandler
-D Turn on debugging output.
-R <ridge> Set the ridge in the log-likelihood.
-A [0|1|2] Defines the type of algorithm: 0. standard MI assumption 1. collective MI assumption, arithmetic mean for posteriors 2. collective MI assumption, geometric mean for posteriors
| Modifier and Type | Field and Description |
|---|---|
static int |
ALGORITHMTYPE_ARITHMETIC
collective MI assumption, arithmetic mean for posteriors
|
static int |
ALGORITHMTYPE_DEFAULT
standard MI assumption
|
static int |
ALGORITHMTYPE_GEOMETRIC
collective MI assumption, geometric mean for posteriors
|
static weka.core.Tag[] |
TAGS_ALGORITHMTYPE
the types of algorithms
|
| Constructor and Description |
|---|
MILR() |
| Modifier and Type | Method and Description |
|---|---|
java.lang.String |
algorithmTypeTipText()
Returns the tip text for this property
|
void |
buildClassifier(weka.core.Instances train)
Builds the classifier
|
double[] |
distributionForInstance(weka.core.Instance exmp)
Computes the distribution for a given exemplar
|
weka.core.SelectedTag |
getAlgorithmType()
Gets the type of algorithm.
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
weka.core.Capabilities |
getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance classifier for the
relational data.
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
double |
getRidge()
Gets the ridge in the log-likelihood.
|
java.lang.String |
globalInfo()
Returns the tip text for this property
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
ridgeTipText()
Returns the tip text for this property
|
void |
setAlgorithmType(weka.core.SelectedTag newType)
Sets the algorithm type.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setRidge(double ridge)
Sets the ridge in the log-likelihood.
|
java.lang.String |
toString()
Gets a string describing the classifier.
|
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacespublic static final int ALGORITHMTYPE_DEFAULT
public static final int ALGORITHMTYPE_ARITHMETIC
public static final int ALGORITHMTYPE_GEOMETRIC
public static final weka.core.Tag[] TAGS_ALGORITHMTYPE
public java.lang.String globalInfo()
public java.util.Enumeration<weka.core.Option> listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.AbstractClassifierpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.AbstractClassifieroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.AbstractClassifierpublic java.lang.String ridgeTipText()
public void setRidge(double ridge)
ridge - the ridgepublic double getRidge()
public java.lang.String algorithmTypeTipText()
public weka.core.SelectedTag getAlgorithmType()
public void setAlgorithmType(weka.core.SelectedTag newType)
newType - the new algorithm typepublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.AbstractClassifierpublic weka.core.Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities in interface weka.core.MultiInstanceCapabilitiesHandlerCapabilitiespublic void buildClassifier(weka.core.Instances train)
throws java.lang.Exception
buildClassifier in interface weka.classifiers.Classifiertrain - the training data to be used for generating the boosted
classifier.java.lang.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(weka.core.Instance exmp)
throws java.lang.Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifierexmp - the exemplar for which distribution is computedjava.lang.Exception - if the distribution can't be computed successfullypublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.classifiers.AbstractClassifierpublic static void main(java.lang.String[] argv)
argv - should contain the command line arguments to the scheme (see
Evaluation)