public class MILR
extends weka.classifiers.AbstractClassifier
implements weka.core.OptionHandler, weka.core.MultiInstanceCapabilitiesHandler
-D Turn on debugging output.
-R <ridge> Set the ridge in the log-likelihood.
-A [0|1|2] Defines the type of algorithm: 0. standard MI assumption 1. collective MI assumption, arithmetic mean for posteriors 2. collective MI assumption, geometric mean for posteriors
Modifier and Type | Field and Description |
---|---|
static int |
ALGORITHMTYPE_ARITHMETIC
collective MI assumption, arithmetic mean for posteriors
|
static int |
ALGORITHMTYPE_DEFAULT
standard MI assumption
|
static int |
ALGORITHMTYPE_GEOMETRIC
collective MI assumption, geometric mean for posteriors
|
static weka.core.Tag[] |
TAGS_ALGORITHMTYPE
the types of algorithms
|
Constructor and Description |
---|
MILR() |
Modifier and Type | Method and Description |
---|---|
java.lang.String |
algorithmTypeTipText()
Returns the tip text for this property
|
void |
buildClassifier(weka.core.Instances train)
Builds the classifier
|
double[] |
distributionForInstance(weka.core.Instance exmp)
Computes the distribution for a given exemplar
|
weka.core.SelectedTag |
getAlgorithmType()
Gets the type of algorithm.
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
weka.core.Capabilities |
getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance classifier for the
relational data.
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
double |
getRidge()
Gets the ridge in the log-likelihood.
|
java.lang.String |
globalInfo()
Returns the tip text for this property
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
ridgeTipText()
Returns the tip text for this property
|
void |
setAlgorithmType(weka.core.SelectedTag newType)
Sets the algorithm type.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setRidge(double ridge)
Sets the ridge in the log-likelihood.
|
java.lang.String |
toString()
Gets a string describing the classifier.
|
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
public static final int ALGORITHMTYPE_DEFAULT
public static final int ALGORITHMTYPE_ARITHMETIC
public static final int ALGORITHMTYPE_GEOMETRIC
public static final weka.core.Tag[] TAGS_ALGORITHMTYPE
public java.lang.String globalInfo()
public java.util.Enumeration<weka.core.Option> listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.classifiers.AbstractClassifier
public void setOptions(java.lang.String[] options) throws java.lang.Exception
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.classifiers.AbstractClassifier
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.classifiers.AbstractClassifier
public java.lang.String ridgeTipText()
public void setRidge(double ridge)
ridge
- the ridgepublic double getRidge()
public java.lang.String algorithmTypeTipText()
public weka.core.SelectedTag getAlgorithmType()
public void setAlgorithmType(weka.core.SelectedTag newType)
newType
- the new algorithm typepublic weka.core.Capabilities getCapabilities()
getCapabilities
in interface weka.classifiers.Classifier
getCapabilities
in interface weka.core.CapabilitiesHandler
getCapabilities
in class weka.classifiers.AbstractClassifier
public weka.core.Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities
in interface weka.core.MultiInstanceCapabilitiesHandler
Capabilities
public void buildClassifier(weka.core.Instances train) throws java.lang.Exception
buildClassifier
in interface weka.classifiers.Classifier
train
- the training data to be used for generating the boosted
classifier.java.lang.Exception
- if the classifier could not be built successfullypublic double[] distributionForInstance(weka.core.Instance exmp) throws java.lang.Exception
distributionForInstance
in interface weka.classifiers.Classifier
distributionForInstance
in class weka.classifiers.AbstractClassifier
exmp
- the exemplar for which distribution is computedjava.lang.Exception
- if the distribution can't be computed successfullypublic java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String getRevision()
getRevision
in interface weka.core.RevisionHandler
getRevision
in class weka.classifiers.AbstractClassifier
public static void main(java.lang.String[] argv)
argv
- should contain the command line arguments to the scheme (see
Evaluation)