public class MISVM
extends weka.classifiers.AbstractClassifier
implements weka.core.OptionHandler, weka.core.MultiInstanceCapabilitiesHandler, weka.core.TechnicalInformationHandler
@inproceedings{Andrews2003,
author = {Stuart Andrews and Ioannis Tsochantaridis and Thomas Hofmann},
booktitle = {Advances in Neural Information Processing Systems 15},
pages = {561-568},
publisher = {MIT Press},
title = {Support Vector Machines for Multiple-Instance Learning},
year = {2003}
}
Valid options are:
-C <double> The complexity constant C. (default 1)
-N <default 0> Whether to 0=normalize/1=standardize/2=neither. (default: 0=normalize)
-I <num> The maximum number of iterations to perform. (default: 500)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number), 0 for full cache and -1 to turn it off. (default: 250007)
-E <num> The Exponent to use. (default: 1.0)
-L Use lower-order terms. (default: no)
SMO,
Serialized Form| Modifier and Type | Field and Description |
|---|---|
static int |
FILTER_NONE
No normalization/standardization
|
static int |
FILTER_NORMALIZE
Normalize training data
|
static int |
FILTER_STANDARDIZE
Standardize training data
|
static weka.core.Tag[] |
TAGS_FILTER
The filter to apply to the training data
|
| Constructor and Description |
|---|
MISVM() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(weka.core.Instances train)
Builds the classifier
|
java.lang.String |
cTipText()
Returns the tip text for this property
|
double[] |
distributionForInstance(weka.core.Instance exmp)
Computes the distribution for a given exemplar
|
java.lang.String |
filterTypeTipText()
Returns the tip text for this property
|
double |
getC()
Get the value of C.
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
weka.core.SelectedTag |
getFilterType()
Gets how the training data will be transformed.
|
weka.classifiers.functions.supportVector.Kernel |
getKernel()
Gets the kernel to use.
|
int |
getMaxIterations()
Gets the maximum number of iterations.
|
weka.core.Capabilities |
getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance classifier for the
relational data.
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing this filter
|
java.lang.String |
kernelTipText()
Returns the tip text for this property
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
maxIterationsTipText()
Returns the tip text for this property
|
void |
setC(double v)
Set the value of C.
|
void |
setFilterType(weka.core.SelectedTag newType)
Sets how the training data will be transformed.
|
void |
setKernel(weka.classifiers.functions.supportVector.Kernel value)
Sets the kernel to use.
|
void |
setMaxIterations(int value)
Sets the maximum number of iterations.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacespublic static final int FILTER_NORMALIZE
public static final int FILTER_STANDARDIZE
public static final int FILTER_NONE
public static final weka.core.Tag[] TAGS_FILTER
public java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic java.util.Enumeration<weka.core.Option> listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.AbstractClassifierpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-C <double> The complexity constant C. (default 1)
-N <default 0> Whether to 0=normalize/1=standardize/2=neither. (default: 0=normalize)
-I <num> The maximum number of iterations to perform. (default: 500)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number), 0 for full cache and -1 to turn it off. (default: 250007)
-E <num> The Exponent to use. (default: 1.0)
-L Use lower-order terms. (default: no)
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.AbstractClassifieroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.AbstractClassifierpublic java.lang.String kernelTipText()
public weka.classifiers.functions.supportVector.Kernel getKernel()
public void setKernel(weka.classifiers.functions.supportVector.Kernel value)
value - the kernelpublic java.lang.String filterTypeTipText()
public void setFilterType(weka.core.SelectedTag newType)
newType - the new filtering modepublic weka.core.SelectedTag getFilterType()
public java.lang.String cTipText()
public double getC()
public void setC(double v)
v - Value to assign to C.public java.lang.String maxIterationsTipText()
public int getMaxIterations()
public void setMaxIterations(int value)
value - the maximum number of iterations.public weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.AbstractClassifierpublic weka.core.Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities in interface weka.core.MultiInstanceCapabilitiesHandlerCapabilitiespublic void buildClassifier(weka.core.Instances train)
throws java.lang.Exception
buildClassifier in interface weka.classifiers.Classifiertrain - the training data to be used for generating the boosted
classifier.java.lang.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(weka.core.Instance exmp)
throws java.lang.Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifierexmp - the exemplar for which distribution is computedjava.lang.Exception - if the distribution can't be computed successfullypublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.classifiers.AbstractClassifierpublic static void main(java.lang.String[] argv)
argv - should contain the command line arguments to the scheme (see
Evaluation)