- getActivationFunction() - Method in class weka.classifiers.functions.MLPModel
-
Returns the ActivationFunction object.
- getCapabilities() - Method in class weka.classifiers.functions.MLPClassifier
-
Returns default capabilities of the classifier.
- getCapabilities() - Method in class weka.classifiers.functions.MLPModel
-
Returns default capabilities of the classifier.
- getCapabilities() - Method in class weka.classifiers.functions.MLPRegressor
-
Returns default capabilities of the classifier.
- getCapabilities() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Returns default capabilities of the filter.
- getEpsilon() - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
-
Returns the value of the epsilon parameter.
- getFilterType() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets how the training data will be transformed.
- getLambda() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets the value of the lambda parameter.
- getLossFunction() - Method in class weka.classifiers.functions.MLPModel
-
Returns the LossFunction object.
- getNumFunctions() - Method in class weka.classifiers.functions.MLPModel
-
Gets the number of functions.
- getNumFunctions() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets the number of functions.
- getNumThreads() - Method in class weka.classifiers.functions.MLPModel
-
Gets the number of threads.
- getNumThreads() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets the number of threads.
- getOptions() - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
-
Gets the current settings of the loss function.
- getOptions() - Method in class weka.classifiers.functions.MLPModel
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets the current settings of the Filter.
- getOutputInOriginalSpace() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets whether to use original space.
- getPoolSize() - Method in class weka.classifiers.functions.MLPModel
-
Gets the number of threads.
- getPoolSize() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets the number of threads.
- getRidge() - Method in class weka.classifiers.functions.MLPModel
-
Gets the value of the ridge parameter.
- getSeed() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets the seed for the random number generations
- getTechnicalInformation() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
- getTolerance() - Method in class weka.classifiers.functions.MLPModel
-
Gets the tolerance parameter for the delta values.
- getTolerance() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets the tolerance parameter for the delta values.
- getUseCGD() - Method in class weka.classifiers.functions.MLPModel
-
Gets whether to use CGD.
- getUseCGD() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets whether to use CGD.
- getUseContractiveAutoencoder() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets whether to use ContractiveAutoencoder.
- getUseExactSigmoid() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets whether to use exact sigmoid.
- getWeightsFile() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Gets current weights file.
- globalInfo() - Method in class weka.classifiers.functions.activation.ApproximateSigmoid
-
Returns info for this class.
- globalInfo() - Method in class weka.classifiers.functions.activation.Sigmoid
-
Returns info for this class.
- globalInfo() - Method in class weka.classifiers.functions.activation.Softplus
-
Returns info for this class.
- globalInfo() - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
-
This will return a string describing the classifier.
- globalInfo() - Method in class weka.classifiers.functions.loss.SquaredError
-
This will return a string describing the classifier.
- globalInfo() - Method in class weka.classifiers.functions.MLPModel
-
This will return a string describing the classifier.
- globalInfo() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
This will return a string describing the filter.
- seedTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Returns the tip text for this property
- setActivationFunction(ActivationFunction) - Method in class weka.classifiers.functions.MLPModel
-
Sets the loss function.
- setEpsilon(double) - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
-
Sets the value of the epsilon parameter.
- setFilterType(SelectedTag) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Sets how the training data will be transformed.
- setLambda(double) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Sets the value of the lambda parameter.
- setLossFunction(LossFunction) - Method in class weka.classifiers.functions.MLPModel
-
Sets the loss function.
- setNumFunctions(int) - Method in class weka.classifiers.functions.MLPModel
-
Sets the number of functions.
- setNumFunctions(int) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Sets the number of functions.
- setNumThreads(int) - Method in class weka.classifiers.functions.MLPModel
-
Sets the number of threads
- setNumThreads(int) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Sets the number of threads
- setOptions(String[]) - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.classifiers.functions.MLPModel
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Parses a given list of options.
- setOutputInOriginalSpace(boolean) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Sets whether to use original space.
- setPoolSize(int) - Method in class weka.classifiers.functions.MLPModel
-
Sets the number of threads
- setPoolSize(int) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Sets the number of threads
- setRidge(double) - Method in class weka.classifiers.functions.MLPModel
-
Sets the value of the ridge parameter.
- setSeed(int) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Set the seed for random number generation.
- setTolerance(double) - Method in class weka.classifiers.functions.MLPModel
-
Sets the tolerance parameter for the delta values.
- setTolerance(double) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Sets the tolerance parameter for the delta values.
- setUseCGD(boolean) - Method in class weka.classifiers.functions.MLPModel
-
Sets whether to use CGD.
- setUseCGD(boolean) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Sets whether to use CGD.
- setUseContractiveAutoencoder(boolean) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Sets whether to use ContractiveAutoencoder.
- setUseExactSigmoid(boolean) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Sets whether to use exact sigmoid.
- setWeightsFile(File) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
-
Sets the weights file to use.
- Sigmoid - Class in weka.classifiers.functions.activation
-
Computes sigmoid activation function f(x) = 1 / (1 + e^(-x))
- Sigmoid() - Constructor for class weka.classifiers.functions.activation.Sigmoid
-
- Softplus - Class in weka.classifiers.functions.activation
-
Computes softplus activation function f(x) = ln(1 + e^(x))
- Softplus() - Constructor for class weka.classifiers.functions.activation.Softplus
-
- SquaredError - Class in weka.classifiers.functions.loss
-
Squared error for MLPRegressor and MLPClassifier:
loss(a, b) = (a-b)^2
- SquaredError() - Constructor for class weka.classifiers.functions.loss.SquaredError
-