Skip navigation links
A B D E F G I L M N O P R S T U W 

A

activation(double, double[], int) - Method in interface weka.classifiers.functions.activation.ActivationFunction
Computes activation function.
activation(double, double[], int) - Method in class weka.classifiers.functions.activation.ApproximateSigmoid
Computes approximate sigmoid function.
activation(double, double[], int) - Method in class weka.classifiers.functions.activation.Sigmoid
Computes sigmoid function.
activation(double, double[], int) - Method in class weka.classifiers.functions.activation.Softplus
Computes softplus activation function.
ActivationFunction - Interface in weka.classifiers.functions.activation
Interface to be implemented for activation functions.
activationFunctionTipText() - Method in class weka.classifiers.functions.MLPModel
 
ApproximateAbsoluteError - Class in weka.classifiers.functions.loss
Approximate absolute error for MLPRegressor and MLPClassifier:
loss(a, b) = sqrt((a-b)^2+epsilon)

Valid options are:
ApproximateAbsoluteError() - Constructor for class weka.classifiers.functions.loss.ApproximateAbsoluteError
 
ApproximateSigmoid - Class in weka.classifiers.functions.activation
Computes approximate (fast) version of sigmoid activation function f(x) = 1 / (1 + e^(-x))

ApproximateSigmoid() - Constructor for class weka.classifiers.functions.activation.ApproximateSigmoid
 

B

buildClassifier(Instances) - Method in class weka.classifiers.functions.MLPModel
Builds the MLP network classifier based on the given dataset.

D

derivative(double, double) - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
The derivative of the loss with respect to the predicted value
derivative(double, double) - Method in interface weka.classifiers.functions.loss.LossFunction
The derivative of the loss with respect to the predicted value
derivative(double, double) - Method in class weka.classifiers.functions.loss.SquaredError
The derivative of the loss with respect to the predicted value
distributionForInstance(Instance) - Method in class weka.classifiers.functions.MLPModel
Calculates the output of the network after the instance has been piped through the fliters to replace missing values, etc.

E

epsilonTipText() - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
 

F

FILTER_NONE - Static variable in class weka.filters.unsupervised.attribute.MLPAutoencoder
 
FILTER_NORMALIZE - Static variable in class weka.filters.unsupervised.attribute.MLPAutoencoder
 
FILTER_STANDARDIZE - Static variable in class weka.filters.unsupervised.attribute.MLPAutoencoder
 
filterTypeTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Returns the tip text for this property

G

getActivationFunction() - Method in class weka.classifiers.functions.MLPModel
Returns the ActivationFunction object.
getCapabilities() - Method in class weka.classifiers.functions.MLPClassifier
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.functions.MLPModel
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.functions.MLPRegressor
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Returns default capabilities of the filter.
getEpsilon() - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
Returns the value of the epsilon parameter.
getFilterType() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets how the training data will be transformed.
getLambda() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets the value of the lambda parameter.
getLossFunction() - Method in class weka.classifiers.functions.MLPModel
Returns the LossFunction object.
getNumFunctions() - Method in class weka.classifiers.functions.MLPModel
Gets the number of functions.
getNumFunctions() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets the number of functions.
getNumThreads() - Method in class weka.classifiers.functions.MLPModel
Gets the number of threads.
getNumThreads() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets the number of threads.
getOptions() - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
Gets the current settings of the loss function.
getOptions() - Method in class weka.classifiers.functions.MLPModel
Gets the current settings of the Classifier.
getOptions() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets the current settings of the Filter.
getOutputInOriginalSpace() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets whether to use original space.
getPoolSize() - Method in class weka.classifiers.functions.MLPModel
Gets the number of threads.
getPoolSize() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets the number of threads.
getRidge() - Method in class weka.classifiers.functions.MLPModel
Gets the value of the ridge parameter.
getSeed() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets the seed for the random number generations
getTechnicalInformation() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTolerance() - Method in class weka.classifiers.functions.MLPModel
Gets the tolerance parameter for the delta values.
getTolerance() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets the tolerance parameter for the delta values.
getUseCGD() - Method in class weka.classifiers.functions.MLPModel
Gets whether to use CGD.
getUseCGD() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets whether to use CGD.
getUseContractiveAutoencoder() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets whether to use ContractiveAutoencoder.
getUseExactSigmoid() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets whether to use exact sigmoid.
getWeightsFile() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Gets current weights file.
globalInfo() - Method in class weka.classifiers.functions.activation.ApproximateSigmoid
Returns info for this class.
globalInfo() - Method in class weka.classifiers.functions.activation.Sigmoid
Returns info for this class.
globalInfo() - Method in class weka.classifiers.functions.activation.Softplus
Returns info for this class.
globalInfo() - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
This will return a string describing the classifier.
globalInfo() - Method in class weka.classifiers.functions.loss.SquaredError
This will return a string describing the classifier.
globalInfo() - Method in class weka.classifiers.functions.MLPModel
This will return a string describing the classifier.
globalInfo() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
This will return a string describing the filter.

I

initFilter(Instances) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Builds the autoencoder network based on the given data.

L

lambdaTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
 
listOptions() - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
Returns an enumeration describing the available options.
listOptions() - Method in class weka.classifiers.functions.MLPModel
Returns an enumeration describing the available options.
listOptions() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Returns an enumeration describing the available options.
loss(double, double) - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
Returns the loss.
loss(double, double) - Method in interface weka.classifiers.functions.loss.LossFunction
Returns the loss.
loss(double, double) - Method in class weka.classifiers.functions.loss.SquaredError
Returns the loss.
LossFunction - Interface in weka.classifiers.functions.loss
Interface implemented by loss functions for MLPRegressor and MLPClassifier.
lossFunctionTipText() - Method in class weka.classifiers.functions.MLPModel
 

M

main(String[]) - Static method in class weka.classifiers.functions.MLPClassifier
Main method to run the code from the command-line using the standard WEKA options.
main(String[]) - Static method in class weka.classifiers.functions.MLPRegressor
Main method to run the code from the command-line using the standard WEKA options.
main(String[]) - Static method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Main method to run the code from the command-line using the standard WEKA options.
MLPAutoencoder - Class in weka.filters.unsupervised.attribute
Implements an autoencoder with one hidden layer and tied weights using WEKA's Optimization class by minimizing the squared error plus a quadratic penalty (weight decay) with the BFGS method.
MLPAutoencoder() - Constructor for class weka.filters.unsupervised.attribute.MLPAutoencoder
 
MLPClassifier - Class in weka.classifiers.functions
Trains a multilayer perceptron with one hidden layer using WEKA's Optimization class by minimizing the given loss function plus a quadratic penalty with the BFGS method.
MLPClassifier() - Constructor for class weka.classifiers.functions.MLPClassifier
 
MLPModel - Class in weka.classifiers.functions
Abstract super class for MLPClassifier and MLPRegressor.
MLPModel() - Constructor for class weka.classifiers.functions.MLPModel
 
MLPRegressor - Class in weka.classifiers.functions
Trains a multilayer perceptron with one hidden layer using WEKA's Optimization class by minimizing the given loss function plus a quadratic penalty with the BFGS method.
MLPRegressor() - Constructor for class weka.classifiers.functions.MLPRegressor
 
modelType() - Method in class weka.classifiers.functions.MLPClassifier
Returns the model type as a string.
modelType() - Method in class weka.classifiers.functions.MLPModel
Returns the model type as a string.
modelType() - Method in class weka.classifiers.functions.MLPRegressor
Returns the model type as a string.

N

numFunctionsTipText() - Method in class weka.classifiers.functions.MLPModel
 
numFunctionsTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
 
numThreadsTipText() - Method in class weka.classifiers.functions.MLPModel
 
numThreadsTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
 

O

outputInOriginalSpaceTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
 

P

poolSizeTipText() - Method in class weka.classifiers.functions.MLPModel
 
poolSizeTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
 

R

ridgeTipText() - Method in class weka.classifiers.functions.MLPModel
 

S

seedTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Returns the tip text for this property
setActivationFunction(ActivationFunction) - Method in class weka.classifiers.functions.MLPModel
Sets the loss function.
setEpsilon(double) - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
Sets the value of the epsilon parameter.
setFilterType(SelectedTag) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Sets how the training data will be transformed.
setLambda(double) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Sets the value of the lambda parameter.
setLossFunction(LossFunction) - Method in class weka.classifiers.functions.MLPModel
Sets the loss function.
setNumFunctions(int) - Method in class weka.classifiers.functions.MLPModel
Sets the number of functions.
setNumFunctions(int) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Sets the number of functions.
setNumThreads(int) - Method in class weka.classifiers.functions.MLPModel
Sets the number of threads
setNumThreads(int) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Sets the number of threads
setOptions(String[]) - Method in class weka.classifiers.functions.loss.ApproximateAbsoluteError
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.functions.MLPModel
Parses a given list of options.
setOptions(String[]) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Parses a given list of options.
setOutputInOriginalSpace(boolean) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Sets whether to use original space.
setPoolSize(int) - Method in class weka.classifiers.functions.MLPModel
Sets the number of threads
setPoolSize(int) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Sets the number of threads
setRidge(double) - Method in class weka.classifiers.functions.MLPModel
Sets the value of the ridge parameter.
setSeed(int) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Set the seed for random number generation.
setTolerance(double) - Method in class weka.classifiers.functions.MLPModel
Sets the tolerance parameter for the delta values.
setTolerance(double) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Sets the tolerance parameter for the delta values.
setUseCGD(boolean) - Method in class weka.classifiers.functions.MLPModel
Sets whether to use CGD.
setUseCGD(boolean) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Sets whether to use CGD.
setUseContractiveAutoencoder(boolean) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Sets whether to use ContractiveAutoencoder.
setUseExactSigmoid(boolean) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Sets whether to use exact sigmoid.
setWeightsFile(File) - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Sets the weights file to use.
Sigmoid - Class in weka.classifiers.functions.activation
Computes sigmoid activation function f(x) = 1 / (1 + e^(-x))

Sigmoid() - Constructor for class weka.classifiers.functions.activation.Sigmoid
 
Softplus - Class in weka.classifiers.functions.activation
Computes softplus activation function f(x) = ln(1 + e^(x))

Softplus() - Constructor for class weka.classifiers.functions.activation.Softplus
 
SquaredError - Class in weka.classifiers.functions.loss
Squared error for MLPRegressor and MLPClassifier:
loss(a, b) = (a-b)^2

SquaredError() - Constructor for class weka.classifiers.functions.loss.SquaredError
 

T

TAGS_FILTER - Static variable in class weka.filters.unsupervised.attribute.MLPAutoencoder
 
toleranceTipText() - Method in class weka.classifiers.functions.MLPModel
 
toleranceTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
 
toString() - Method in class weka.classifiers.functions.MLPModel
Outputs the network as a string.

U

useCGDTipText() - Method in class weka.classifiers.functions.MLPModel
 
useCGDTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
 
useContractiveAutoencoderTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
 
useExactSigmoidTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
 

W

weightsFileTipText() - Method in class weka.filters.unsupervised.attribute.MLPAutoencoder
Returns the tip text for this property.
weka.classifiers.functions - package weka.classifiers.functions
 
weka.classifiers.functions.activation - package weka.classifiers.functions.activation
 
weka.classifiers.functions.loss - package weka.classifiers.functions.loss
 
weka.filters.unsupervised.attribute - package weka.filters.unsupervised.attribute
 
A B D E F G I L M N O P R S T U W 
Skip navigation links