public class MLPAutoencoder
extends weka.filters.SimpleBatchFilter
implements weka.filters.UnsupervisedFilter, weka.core.TechnicalInformationHandler
-N <int> Number of hidden units (default is 2).
-L <double> Lambda factor for penalty on weights (default is 0.01).
-O <double> Tolerance parameter for delta values (default is 1.0e-6).
-G Use conjugate gradient descent (recommended for many attributes).
-C Use contractive autoencoder instead of autoencoder with weight decay.
-X Use exact sigmoid function rather than approximation.
-F Output data in original space, so do not output reduced data.
-P <int> The size of the thread pool, for example, the number of cores in the CPU. (default 1)
-E <int> The number of threads to use, which should be >= size of thread pool. (default 1)
-weights-file <filename> The file to write weight vectors to in ARFF format. (default: none)
-S Whether to 0=normalize/1=standardize/2=neither. (default 1=standardize)
-seed <int> The seed for the random number generator (default is 1).
Modifier and Type | Field and Description |
---|---|
static int |
FILTER_NONE |
static int |
FILTER_NORMALIZE |
static int |
FILTER_STANDARDIZE |
static weka.core.Tag[] |
TAGS_FILTER |
Constructor and Description |
---|
MLPAutoencoder() |
Modifier and Type | Method and Description |
---|---|
java.lang.String |
filterTypeTipText()
Returns the tip text for this property
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the filter.
|
weka.core.SelectedTag |
getFilterType()
Gets how the training data will be transformed.
|
double |
getLambda()
Gets the value of the lambda parameter.
|
int |
getNumFunctions()
Gets the number of functions.
|
int |
getNumThreads()
Gets the number of threads.
|
java.lang.String[] |
getOptions()
Gets the current settings of the Filter.
|
boolean |
getOutputInOriginalSpace()
Gets whether to use original space.
|
int |
getPoolSize()
Gets the number of threads.
|
int |
getSeed()
Gets the seed for the random number generations
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
double |
getTolerance()
Gets the tolerance parameter for the delta values.
|
boolean |
getUseCGD()
Gets whether to use CGD.
|
boolean |
getUseContractiveAutoencoder()
Gets whether to use ContractiveAutoencoder.
|
boolean |
getUseExactSigmoid()
Gets whether to use exact sigmoid.
|
java.io.File |
getWeightsFile()
Gets current weights file.
|
java.lang.String |
globalInfo()
This will return a string describing the filter.
|
void |
initFilter(weka.core.Instances data)
Builds the autoencoder network based on the given data.
|
java.lang.String |
lambdaTipText() |
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] argv)
Main method to run the code from the command-line using the standard WEKA
options.
|
java.lang.String |
numFunctionsTipText() |
java.lang.String |
numThreadsTipText() |
java.lang.String |
outputInOriginalSpaceTipText() |
java.lang.String |
poolSizeTipText() |
java.lang.String |
seedTipText()
Returns the tip text for this property
|
void |
setFilterType(weka.core.SelectedTag newType)
Sets how the training data will be transformed.
|
void |
setLambda(double newLambda)
Sets the value of the lambda parameter.
|
void |
setNumFunctions(int newNumFunctions)
Sets the number of functions.
|
void |
setNumThreads(int nT)
Sets the number of threads
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setOutputInOriginalSpace(boolean newOutputInOriginalSpace)
Sets whether to use original space.
|
void |
setPoolSize(int nT)
Sets the number of threads
|
void |
setSeed(int seed)
Set the seed for random number generation.
|
void |
setTolerance(double newTolerance)
Sets the tolerance parameter for the delta values.
|
void |
setUseCGD(boolean newUseCGD)
Sets whether to use CGD.
|
void |
setUseContractiveAutoencoder(boolean newUseContractiveAutoencoder)
Sets whether to use ContractiveAutoencoder.
|
void |
setUseExactSigmoid(boolean newUseExactSigmoid)
Sets whether to use exact sigmoid.
|
void |
setWeightsFile(java.io.File value)
Sets the weights file to use.
|
java.lang.String |
toleranceTipText() |
java.lang.String |
useCGDTipText() |
java.lang.String |
useContractiveAutoencoderTipText() |
java.lang.String |
useExactSigmoidTipText() |
java.lang.String |
weightsFileTipText()
Returns the tip text for this property.
|
allowAccessToFullInputFormat, batchFinished, input, input
batchFilterFile, debugTipText, doNotCheckCapabilitiesTipText, filterFile, getCapabilities, getCopyOfInputFormat, getDebug, getDoNotCheckCapabilities, getOutputFormat, getRevision, isFirstBatchDone, isNewBatch, isOutputFormatDefined, makeCopies, makeCopy, mayRemoveInstanceAfterFirstBatchDone, numPendingOutput, output, outputPeek, postExecution, preExecution, run, runFilter, setDebug, setDoNotCheckCapabilities, toString, useFilter, wekaStaticWrapper
public static final int FILTER_NORMALIZE
public static final int FILTER_STANDARDIZE
public static final int FILTER_NONE
public static final weka.core.Tag[] TAGS_FILTER
public weka.core.Capabilities getCapabilities()
getCapabilities
in interface weka.core.CapabilitiesHandler
getCapabilities
in class weka.filters.Filter
public void initFilter(weka.core.Instances data) throws java.lang.Exception
java.lang.Exception
public java.lang.String globalInfo()
globalInfo
in class weka.filters.SimpleFilter
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface weka.core.TechnicalInformationHandler
public java.lang.String seedTipText()
public void setSeed(int seed)
seed
- the seedpublic int getSeed()
public java.lang.String toleranceTipText()
public double getTolerance()
public void setTolerance(double newTolerance)
public java.lang.String numFunctionsTipText()
public int getNumFunctions()
public void setNumFunctions(int newNumFunctions)
public java.lang.String lambdaTipText()
public double getLambda()
public void setLambda(double newLambda)
public java.lang.String useCGDTipText()
public boolean getUseCGD()
public void setUseCGD(boolean newUseCGD)
public java.lang.String useContractiveAutoencoderTipText()
public boolean getUseContractiveAutoencoder()
public void setUseContractiveAutoencoder(boolean newUseContractiveAutoencoder)
public java.lang.String useExactSigmoidTipText()
public boolean getUseExactSigmoid()
public void setUseExactSigmoid(boolean newUseExactSigmoid)
public java.lang.String outputInOriginalSpaceTipText()
public boolean getOutputInOriginalSpace()
public void setOutputInOriginalSpace(boolean newOutputInOriginalSpace)
public java.lang.String numThreadsTipText()
public int getNumThreads()
public void setNumThreads(int nT)
public java.lang.String poolSizeTipText()
public int getPoolSize()
public void setPoolSize(int nT)
public java.lang.String weightsFileTipText()
public java.io.File getWeightsFile()
public void setWeightsFile(java.io.File value)
value
- the weights file.public java.lang.String filterTypeTipText()
public weka.core.SelectedTag getFilterType()
public void setFilterType(weka.core.SelectedTag newType)
newType
- the new filtering modepublic java.util.Enumeration<weka.core.Option> listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.filters.Filter
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-N <int> Number of hidden units (default is 2).
-L <double> Lambda factor for penalty on weights (default is 0.01).
-O <double> Tolerance parameter for delta values (default is 1.0e-6).
-G Use conjugate gradient descent (recommended for many attributes).
-C Use contractive autoencoder instead of autoencoder with weight decay.
-X Use exact sigmoid function rather than approximation.
-F Output data in original space, so do not output reduced data.
-P <int> The size of the thread pool, for example, the number of cores in the CPU. (default 1)
-E <int> The number of threads to use, which should be >= size of thread pool. (default 1)
-weights-file <filename> The file to write weight vectors to in ARFF format. (default: none)
-S Whether to 0=normalize/1=standardize/2=neither. (default 1=standardize)
-seed <int> The seed for the random number generator (default is 1).Options after -- are passed to the designated filter.
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.filters.Filter
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.filters.Filter
public static void main(java.lang.String[] argv)