Interface | Description |
---|---|
LossFunction |
Interface implemented by loss functions for MLPRegressor and MLPClassifier.
|
Class | Description |
---|---|
ApproximateAbsoluteError |
Approximate absolute error for MLPRegressor and MLPClassifier:
loss(a, b) = sqrt((a-b)^2+epsilon) Valid options are: |
SquaredError |
Squared error for MLPRegressor and MLPClassifier:
loss(a, b) = (a-b)^2 |