public class MLPRegressor extends MLPModel implements weka.core.WeightedInstancesHandler
-N <int> Number of hidden units (default is 2).
-R <double> Ridge factor for quadratic penalty on weights (default is 0.01).
-O <double> Tolerance parameter for delta values (default is 1.0e-6).
-G Use conjugate gradient descent (recommended for many attributes).
-P <int> The size of the thread pool, for example, the number of cores in the CPU. (default 1)
-E <int> The number of threads to use, which should be >= size of thread pool. (default 1)
-L <classname and parameters> The loss function to use. (default: weka.classifiers.functions.loss.SquaredError)
-A <classname and parameters> The activation function to use. (default: weka.classifiers.functions.activation.ApproximateSigmoid)
-S <num> Random number seed. (default 1)
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
-num-decimal-places The number of decimal places for the output of numbers in the model (default 2).
| Constructor and Description |
|---|
MLPRegressor() |
| Modifier and Type | Method and Description |
|---|---|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
static void |
main(java.lang.String[] argv)
Main method to run the code from the command-line using the standard WEKA
options.
|
java.lang.String |
modelType()
Returns the model type as a string.
|
activationFunctionTipText, buildClassifier, distributionForInstance, getActivationFunction, getLossFunction, getNumFunctions, getNumThreads, getOptions, getPoolSize, getRidge, getTolerance, getUseCGD, globalInfo, listOptions, lossFunctionTipText, numFunctionsTipText, numThreadsTipText, poolSizeTipText, ridgeTipText, setActivationFunction, setLossFunction, setNumFunctions, setNumThreads, setOptions, setPoolSize, setRidge, setTolerance, setUseCGD, toleranceTipText, toString, useCGDTipTextbatchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, getRevision, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacespublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class MLPModelpublic java.lang.String modelType()
public static void main(java.lang.String[] argv)