public class NeuralNetConfiguration extends org.deeplearning4j.nn.conf.NeuralNetConfiguration implements java.io.Serializable, OptionHandler
Constructor and Description |
---|
NeuralNetConfiguration()
Constructor that provides default values for the settings.
|
Modifier and Type | Method and Description |
---|---|
int |
getIterationCount() |
double |
getLeakyreluAlpha() |
org.deeplearning4j.nn.conf.LearningRatePolicy |
getLearningRatePolicy() |
double |
getLrPolicyDecayRate() |
double |
getLrPolicyPower() |
double |
getLrPolicySteps() |
int |
getMaxNumLineSearchIterations() |
int |
getNumIterations() |
org.deeplearning4j.nn.api.OptimizationAlgorithm |
getOptimizationAlgo() |
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
long |
getSeed() |
org.deeplearning4j.nn.conf.stepfunctions.StepFunction |
getStepFunction() |
boolean |
isMiniBatch() |
boolean |
isMinimize() |
boolean |
isPretrain() |
boolean |
isUseDropConnect() |
boolean |
isUseRegularization() |
java.util.Enumeration<Option> |
listOptions()
Returns an enumeration describing the available options.
|
void |
setIterationCount(int n) |
void |
setLeakyreluAlpha(double a) |
void |
setLearningRatePolicy(org.deeplearning4j.nn.conf.LearningRatePolicy p) |
void |
setLrPolicyDecayRate(double r) |
void |
setLrPolicyPower(double r) |
void |
setLrPolicySteps(double r) |
void |
setMaxNumLineSearchIterations(int n) |
void |
setMiniBatch(boolean b) |
void |
setMinimize(boolean b) |
void |
setNumIterations(int n) |
void |
setOptimizationAlgo(org.deeplearning4j.nn.api.OptimizationAlgorithm optimAlgorithm) |
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setPretrain(boolean b) |
void |
setSeed(long n) |
void |
setStepFunction(org.deeplearning4j.nn.conf.stepfunctions.StepFunction f) |
void |
setUseDropConnect(boolean b) |
void |
setUseRegularization(boolean b) |
addVariable, clearVariables, clone, equals, fromJson, fromYaml, getL1ByParam, getL1ByParam, getL2ByParam, getL2ByParam, getLayer, getLearningRateByParam, getLearningRateByParam, getVariables, hashCode, mapper, mapperYaml, reinitMapperWithSubtypes, setL1ByParam, setL2ByParam, setLayer, setLayerParamLR, setLearningRateByParam, setLearningRateByParam, setVariables, toJson, toString, toYaml, variables, variables
public NeuralNetConfiguration()
@OptionMetadata(description="Optimization algorithm (LINE_GRADIENT_DESCENT, CONJUGATE_GRADIENT, HESSIAN_FREE, LBFGS, STOCHASTIC_GRADIENT_DESCENT)", displayName="optimization algorithm", commandLineParamName="algorithm", commandLineParamSynopsis="-algorithm <string>", displayOrder=0) public org.deeplearning4j.nn.api.OptimizationAlgorithm getOptimizationAlgo()
getOptimizationAlgo
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setOptimizationAlgo(org.deeplearning4j.nn.api.OptimizationAlgorithm optimAlgorithm)
setOptimizationAlgo
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@OptionMetadata(displayName="leaky relu alpha", description="The parameter for the leaky relu (default = 0.1).", commandLineParamName="leakyreluAlpha", commandLineParamSynopsis="-leakyreluAlpha <double>", displayOrder=1) public double getLeakyreluAlpha()
getLeakyreluAlpha
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setLeakyreluAlpha(double a)
setLeakyreluAlpha
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@OptionMetadata(displayName="learning rate policy", description="The learning rate policy (default = None).", commandLineParamName="learningRatePolicy", commandLineParamSynopsis="-learningRatePolicy <string>", displayOrder=2) public org.deeplearning4j.nn.conf.LearningRatePolicy getLearningRatePolicy()
getLearningRatePolicy
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setLearningRatePolicy(org.deeplearning4j.nn.conf.LearningRatePolicy p)
setLearningRatePolicy
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@OptionMetadata(displayName="learning rate policy decay rate", description="The learning rate policy decay rate (default = NaN).", commandLineParamName="lrPolicyDecayRate", commandLineParamSynopsis="-lrPolicyDecayRate <double>", displayOrder=3) public double getLrPolicyDecayRate()
getLrPolicyDecayRate
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setLrPolicyDecayRate(double r)
setLrPolicyDecayRate
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@OptionMetadata(displayName="learning rate policy power", description="The learning rate policy power (default = NaN).", commandLineParamName="lrPolicyPower", commandLineParamSynopsis="-lrPolicyPower <double>", displayOrder=4) public double getLrPolicyPower()
getLrPolicyPower
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setLrPolicyPower(double r)
setLrPolicyPower
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@OptionMetadata(displayName="learning rate policy steps", description="The learning rate policy steps (default = NaN).", commandLineParamName="lrPolicySteps", commandLineParamSynopsis="-lrPolicySteps <double>", displayOrder=5) public double getLrPolicySteps()
getLrPolicySteps
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setLrPolicySteps(double r)
setLrPolicySteps
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@OptionMetadata(displayName="maximum number of line search iterations", description="The maximum number of line search iterations (default = 5).", commandLineParamName="maxNumLineSearchIterations", commandLineParamSynopsis="-maxNumLineSearchIterations <int>", displayOrder=6) public int getMaxNumLineSearchIterations()
getMaxNumLineSearchIterations
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setMaxNumLineSearchIterations(int n)
setMaxNumLineSearchIterations
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@OptionMetadata(displayName="whether to minimize objective", description="Whether to minimize objective.", commandLineParamIsFlag=true, commandLineParamName="minimize", commandLineParamSynopsis="-minimize", displayOrder=7) public boolean isMinimize()
isMinimize
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setMinimize(boolean b)
setMinimize
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@OptionMetadata(displayName="whether to use drop connect", description="Whether to use drop connect.", commandLineParamIsFlag=true, commandLineParamName="useDropConnect", commandLineParamSynopsis="-useDropConnect", displayOrder=8) public boolean isUseDropConnect()
isUseDropConnect
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setUseDropConnect(boolean b)
setUseDropConnect
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@OptionMetadata(displayName="whether to use regularization", description="Whether to use regularization.", commandLineParamIsFlag=true, commandLineParamName="useRegularization", commandLineParamSynopsis="-useRegularization", displayOrder=9) public boolean isUseRegularization()
isUseRegularization
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setUseRegularization(boolean b)
setUseRegularization
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@OptionMetadata(displayName="number of iterations for optimization", description="The number of iterations for optimization (default = 1).", commandLineParamName="numIterations", commandLineParamSynopsis="-numIterations <int>", displayOrder=10) public int getNumIterations()
getNumIterations
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setNumIterations(int n)
setNumIterations
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@OptionMetadata(displayName="step function", description="The step function to use (default = default).", commandLineParamName="stepFunction", commandLineParamSynopsis="-stepFunction <string>", displayOrder=11) public org.deeplearning4j.nn.conf.stepfunctions.StepFunction getStepFunction()
getStepFunction
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setStepFunction(org.deeplearning4j.nn.conf.stepfunctions.StepFunction f)
setStepFunction
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@ProgrammaticProperty public int getIterationCount()
getIterationCount
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setIterationCount(int n)
setIterationCount
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@ProgrammaticProperty public long getSeed()
getSeed
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setSeed(long n)
setSeed
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@ProgrammaticProperty public boolean isMiniBatch()
isMiniBatch
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setMiniBatch(boolean b)
setMiniBatch
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
@ProgrammaticProperty public boolean isPretrain()
isPretrain
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public void setPretrain(boolean b)
setPretrain
in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
public java.util.Enumeration<Option> listOptions()
listOptions
in interface OptionHandler
public java.lang.String[] getOptions()
getOptions
in interface OptionHandler
public void setOptions(java.lang.String[] options) throws java.lang.Exception
setOptions
in interface OptionHandler
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supported