private void readObject(java.io.ObjectInputStream ois) throws java.lang.ClassNotFoundException, java.io.IOException
java.lang.ClassNotFoundException
java.io.IOException
private void writeObject(java.io.ObjectOutputStream oos) throws java.io.IOException
java.io.IOException
org.slf4j.Logger m_log
ReplaceMissingValues m_replaceMissing
Filter m_Filter
NominalToBinary m_nominalToBinary
ZeroR m_zeroR
long m_modelSize
java.io.File m_logFile
org.deeplearning4j.nn.conf.layers.Layer[] m_layers
NeuralNetConfiguration m_configuration
int m_numEpochs
int m_NumEpochsPerformed
Instances m_Data
AbstractDataSetIterator m_iterator
int m_queueSize
int m_filterType
double m_x1
double m_x0
NominalToBinary m_NominalToBinary
Filter m_Filter
int m_filterType
ReplaceMissingValues m_Missing
boolean m_checksTurnedOff
double m_delta
double m_deltaSquared
double m_Alin
double m_Blin
Kernel m_kernel
Kernel m_actualKernel
int m_NumTrain
double m_avg_target
no.uib.cipr.matrix.Matrix m_L
no.uib.cipr.matrix.Vector m_t
double[] m_weights
double[] m_Coefficients
boolean[] m_SelectedAttributes
Instances m_TransformedData
ReplaceMissingValues m_MissingFilter
NominalToBinary m_TransformFilter
double m_ClassStdDev
double m_ClassMean
int m_ClassIndex
double[] m_Means
double[] m_StdDevs
boolean m_outputAdditionalStats
int m_AttributeSelection
boolean m_EliminateColinearAttributes
boolean m_checksTurnedOff
boolean m_useQRDecomposition
double m_Ridge
boolean m_Minimal
boolean m_ModelBuilt
boolean m_isZeroR
int m_df
double m_RSquared
double m_RSquaredAdj
double m_FStat
double[] m_StdErrorOfCoef
double[] m_TStats
double[][] m_Par
double[][] m_Data
int m_NumPredictors
int m_ClassIndex
int m_NumClasses
double m_Ridge
RemoveUseless m_AttFilter
NominalToBinary m_NominalToBinary
ReplaceMissingValues m_ReplaceMissingValues
double m_LL
int m_MaxIts
boolean m_useConjugateGradientDescent
Instances m_structure
int m_numModels
Classifier m_ZeroR
boolean m_useDefaultModel
Instances m_instances
Instance m_currentInstance
boolean m_numeric
double[] m_attributeRanges
double[] m_attributeBases
MultilayerPerceptron.NeuralEnd[] m_outputs
MultilayerPerceptron.NeuralEnd[] m_inputs
NeuralConnection[] m_neuralNodes
int m_numClasses
int m_numAttributes
weka.classifiers.functions.MultilayerPerceptron.NodePanel m_nodePanel
weka.classifiers.functions.MultilayerPerceptron.ControlPanel m_controlPanel
int m_nextId
java.util.ArrayList<E> m_selected
int m_numEpochs
boolean m_stopIt
boolean m_stopped
boolean m_accepted
javax.swing.JFrame m_win
boolean m_autoBuild
boolean m_gui
int m_valSize
int m_driftThreshold
int m_randomSeed
java.util.Random m_random
boolean m_useNomToBin
NominalToBinary m_nominalToBinaryFilter
java.lang.String m_hiddenLayers
boolean m_normalizeAttributes
boolean m_decay
double m_learningRate
double m_momentum
int m_epoch
double m_error
boolean m_reset
boolean m_normalizeClass
SigmoidUnit m_sigmoidUnit
LinearUnit m_linearUnit
int m_link
boolean m_input
ReplaceMissingValues m_replaceMissing
Filter m_nominalToBinary
Normalize m_normalize
double m_lambda
double m_learningRate
double[] m_weights
double m_epsilon
double m_t
double m_numInstances
int m_epochs
boolean m_dontNormalize
boolean m_dontReplaceMissing
Instances m_data
int m_loss
int m_numModels
int m_periodicP
double m_minWordP
double m_minAbsCoefficient
boolean m_wordFrequencies
boolean m_normalize
double m_norm
double m_lnorm
java.util.LinkedHashMap<K,V> m_dictionary
StopwordsHandler m_StopwordsHandler
Tokenizer m_tokenizer
boolean m_lowercaseTokens
Stemmer m_stemmer
double m_lambda
double m_learningRate
double m_t
double m_bias
double m_numInstances
Instances m_data
int m_epochs
int m_loss
SGD m_svmProbs
boolean m_fitLogistic
Instances m_fitLogisticStructure
int m_numModels
double m_count
double m_weight
Attribute m_attribute
int m_attributeIndex
double m_slope
double m_intercept
double m_classMeanForMissing
boolean m_outputAdditionalStats
int m_df
double m_seSlope
double m_seIntercept
double m_tstatSlope
double m_tstatIntercept
double m_rsquared
double m_rsquaredAdj
double m_fstat
boolean m_suppressErrorMessage
LogisticBase m_boostedModel
NominalToBinary m_NominalToBinary
ReplaceMissingValues m_ReplaceMissingValues
int m_numBoostingIterations
int m_maxBoostingIterations
int m_heuristicStop
boolean m_useCrossValidation
boolean m_errorOnProbabilities
double m_weightTrimBeta
boolean m_useAIC
SMO.BinarySMO[][] m_classifiers
double m_C
double m_eps
double m_tol
int m_filterType
NominalToBinary m_NominalToBinary
Filter m_Filter
ReplaceMissingValues m_Missing
int m_classIndex
Attribute m_classAttribute
boolean m_KernelIsLinear
boolean m_checksTurnedOff
boolean m_fitCalibratorModels
Classifier m_calibrator
int m_numFolds
int m_randomSeed
Kernel m_kernel
double[] m_alpha
double m_b
double m_bLow
double m_bUp
int m_iLow
int m_iUp
Instances m_data
double[] m_weights
double[] m_sparseWeights
int[] m_sparseIndices
Kernel m_kernel
double[] m_class
double[] m_errors
SMOset m_I0
SMOset m_I1
SMOset m_I2
SMOset m_I3
SMOset m_I4
SMOset m_supportVectors
Classifier m_calibrator
Instances m_calibrationDataHeader
double m_sumOfWeights
long m_nEvals
int m_nCacheHits
int m_filterType
NominalToBinary m_NominalToBinary
Filter m_Filter
ReplaceMissingValues m_Missing
boolean m_onlyNumeric
double m_C
double m_x1
double m_x0
RegOptimizer m_optimizer
Kernel m_kernel
int m_MaxK
int m_NumIterations
double m_Exponent
int m_K
int[] m_Additions
boolean[] m_IsAddition
int[] m_Weights
Instances m_Train
int m_Seed
NominalToBinary m_NominalToBinary
ReplaceMissingValues m_ReplaceMissingValues
java.util.ArrayList<E> m_filenames
java.util.ArrayList<E> m_classes
java.util.Iterator<E> m_classIterator
java.util.Random m_random
int m_numMiniBatches
java.util.ArrayList<E> lossesPerEpoch
org.nd4j.linalg.dataset.DataSet m_data
int m_batchSize
int m_cursor
java.util.Random m_random
int m_batchSize
int m_height
int m_width
int m_numChannels
int m_height
int m_width
int m_numChannels
java.io.File m_imagesLocation