Skip navigation links
A B C D E F G H I L M N O P R S T U V W 

A

AbstractDataSetIterator - Class in weka.dl4j.iterators
An abstract iterator wrapper.
AbstractDataSetIterator() - Constructor for class weka.dl4j.iterators.AbstractDataSetIterator
 
ActivationCube - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationCube that implements WEKA option handling.
ActivationCube() - Constructor for class weka.dl4j.activations.ActivationCube
 
ActivationELU - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationELU that implements WEKA option handling.
ActivationELU() - Constructor for class weka.dl4j.activations.ActivationELU
 
ActivationHardSigmoid - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationHardSigmoid that implements WEKA option handling.
ActivationHardSigmoid() - Constructor for class weka.dl4j.activations.ActivationHardSigmoid
 
ActivationHardTanH - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationHardTanH that implements WEKA option handling.
ActivationHardTanH() - Constructor for class weka.dl4j.activations.ActivationHardTanH
 
ActivationIdentity - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationIdentity that implements WEKA option handling.
ActivationIdentity() - Constructor for class weka.dl4j.activations.ActivationIdentity
 
ActivationLReLU - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationLReLU that implements WEKA option handling.
ActivationLReLU() - Constructor for class weka.dl4j.activations.ActivationLReLU
 
ActivationRationalTanh - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationRationalTanh that implements WEKA option handling.
ActivationRationalTanh() - Constructor for class weka.dl4j.activations.ActivationRationalTanh
 
ActivationReLU - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationReLU that implements WEKA option handling.
ActivationReLU() - Constructor for class weka.dl4j.activations.ActivationReLU
 
ActivationRReLU - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationRReLU that implements WEKA option handling.
ActivationRReLU() - Constructor for class weka.dl4j.activations.ActivationRReLU
 
ActivationSigmoid - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationSigmoid that implements WEKA option handling.
ActivationSigmoid() - Constructor for class weka.dl4j.activations.ActivationSigmoid
 
ActivationSoftmax - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationSoftmax that implements WEKA option handling.
ActivationSoftmax() - Constructor for class weka.dl4j.activations.ActivationSoftmax
 
ActivationSoftPlus - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationSoftPlus that implements WEKA option handling.
ActivationSoftPlus() - Constructor for class weka.dl4j.activations.ActivationSoftPlus
 
ActivationSoftSign - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationSoftSign that implements WEKA option handling.
ActivationSoftSign() - Constructor for class weka.dl4j.activations.ActivationSoftSign
 
ActivationTanH - Class in weka.dl4j.activations
A version of DeepLearning4j's ActivationTanH that implements WEKA option handling.
ActivationTanH() - Constructor for class weka.dl4j.activations.ActivationTanH
 
asyncSupported() - Method in class weka.dl4j.ShufflingDataSetIterator
Whether the iterator can be used asynchronously.

B

batch() - Method in class weka.dl4j.ShufflingDataSetIterator
The size of the mini batches.
BatchNormalization - Class in weka.dl4j.layers
A version of DeepLearning4j's BatchNormalization layer that implements WEKA option handling.
BatchNormalization() - Constructor for class weka.dl4j.layers.BatchNormalization
Constructor for setting some defaults.
BinomialDistribution - Class in weka.dl4j.distribution
A version of DeepLearning4j's BinomialDistribution that implements WEKA option handling.
BinomialDistribution() - Constructor for class weka.dl4j.distribution.BinomialDistribution
Constructs binomial distribution with 1 trial and success probability 0.5.
buildClassifier(Instances) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
The method used to train the classifier.

C

ConvolutionalInstancesIterator - Class in weka.dl4j.iterators
Converts the given Instances object into a DataSet and then constructs and returns a ShufflingDataSetIterator.
ConvolutionalInstancesIterator() - Constructor for class weka.dl4j.iterators.ConvolutionalInstancesIterator
 
ConvolutionLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's ConvolutionLayer that implements WEKA option handling.
ConvolutionLayer() - Constructor for class weka.dl4j.layers.ConvolutionLayer
Constructor for setting some defaults.
cursor() - Method in class weka.dl4j.ShufflingDataSetIterator
The cursor given the location in the dataset.

D

DefaultInstancesIterator - Class in weka.dl4j.iterators
Converts the given Instances object into a DataSet and then constructs and returns a ShufflingDataSetIterator.
DefaultInstancesIterator() - Constructor for class weka.dl4j.iterators.DefaultInstancesIterator
 
DefaultStepFunction - Class in weka.dl4j.stepfunctions
A version of DeepLearning4j's DefaultStepFunction that implements WEKA option handling.
DefaultStepFunction() - Constructor for class weka.dl4j.stepfunctions.DefaultStepFunction
 
DenseLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's DenseLayer that implements WEKA option handling.
DenseLayer() - Constructor for class weka.dl4j.layers.DenseLayer
Constructor for setting some defaults.
distributionForInstance(Instance) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
The method to use when making a prediction for a test instance.
distributionsForInstances(Instances) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
The method to use when making predictions for test instances.
Dl4jMlpClassifier - Class in weka.classifiers.functions
A wrapper for DeepLearning4j that can be used to train a multi-layer perceptron using that library.
Dl4jMlpClassifier() - Constructor for class weka.classifiers.functions.Dl4jMlpClassifier
 
done() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Clean up after learning.

E

EasyImageRecordReader - Class in weka.dl4j
ImageRecordReader in DeepLearning4j assumes that your images are separated into different folders, where each folder is a class, e.g.
EasyImageRecordReader(int, int, int, ArrayList<File>, ArrayList<String>, int) - Constructor for class weka.dl4j.EasyImageRecordReader
Constructor for the record reader.

F

FileIterationListener - Class in weka.dl4j
Class for listening to performance stats and writing them to a file.
FileIterationListener(String, int) - Constructor for class weka.dl4j.FileIterationListener
Constructor for this listener.
FILTER_NONE - Static variable in class weka.classifiers.functions.Dl4jMlpClassifier
filter: No normalization/standardization
FILTER_NORMALIZE - Static variable in class weka.classifiers.functions.Dl4jMlpClassifier
filter: Normalize training data
FILTER_STANDARDIZE - Static variable in class weka.classifiers.functions.Dl4jMlpClassifier
filter: Standardize training data

G

getActivationFn() - Method in class weka.dl4j.layers.BatchNormalization
 
getActivationFn() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getActivationFn() - Method in class weka.dl4j.layers.DenseLayer
 
getActivationFn() - Method in class weka.dl4j.layers.OutputLayer
 
getActivationFn() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getActivationFunction() - Method in class weka.dl4j.layers.BatchNormalization
 
getActivationFunction() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getActivationFunction() - Method in class weka.dl4j.layers.DenseLayer
 
getActivationFunction() - Method in class weka.dl4j.layers.OutputLayer
 
getActivationFunction() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getAdamMeanDecay() - Method in class weka.dl4j.layers.BatchNormalization
 
getAdamMeanDecay() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getAdamMeanDecay() - Method in class weka.dl4j.layers.DenseLayer
 
getAdamMeanDecay() - Method in class weka.dl4j.layers.OutputLayer
 
getAdamMeanDecay() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getAdamVarDecay() - Method in class weka.dl4j.layers.BatchNormalization
 
getAdamVarDecay() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getAdamVarDecay() - Method in class weka.dl4j.layers.DenseLayer
 
getAdamVarDecay() - Method in class weka.dl4j.layers.OutputLayer
 
getAdamVarDecay() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getBeta() - Method in class weka.dl4j.layers.BatchNormalization
 
getBiasInit() - Method in class weka.dl4j.layers.BatchNormalization
 
getBiasInit() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getBiasInit() - Method in class weka.dl4j.layers.DenseLayer
 
getBiasInit() - Method in class weka.dl4j.layers.OutputLayer
 
getBiasInit() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getBiasL1() - Method in class weka.dl4j.layers.BatchNormalization
 
getBiasL1() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getBiasL1() - Method in class weka.dl4j.layers.DenseLayer
 
getBiasL1() - Method in class weka.dl4j.layers.OutputLayer
 
getBiasL1() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getBiasL2() - Method in class weka.dl4j.layers.BatchNormalization
 
getBiasL2() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getBiasL2() - Method in class weka.dl4j.layers.DenseLayer
 
getBiasL2() - Method in class weka.dl4j.layers.OutputLayer
 
getBiasL2() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getBiasLearningRate() - Method in class weka.dl4j.layers.BatchNormalization
 
getBiasLearningRate() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getBiasLearningRate() - Method in class weka.dl4j.layers.DenseLayer
 
getBiasLearningRate() - Method in class weka.dl4j.layers.OutputLayer
 
getBiasLearningRate() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getCapabilities() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Returns default capabilities of the classifier.
getConvolutionMode() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getConvolutionMode() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getCudnnAlgoMode() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getDataSetIterator() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getDecay() - Method in class weka.dl4j.layers.BatchNormalization
 
getDist() - Method in class weka.dl4j.layers.BatchNormalization
 
getDist() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getDist() - Method in class weka.dl4j.layers.DenseLayer
 
getDist() - Method in class weka.dl4j.layers.OutputLayer
 
getDist() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getDropOut() - Method in class weka.dl4j.layers.BatchNormalization
 
getDropOut() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getDropOut() - Method in class weka.dl4j.layers.DenseLayer
 
getDropOut() - Method in class weka.dl4j.layers.OutputLayer
 
getDropOut() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getEps() - Method in class weka.dl4j.layers.BatchNormalization
 
getEps() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getEpsilon() - Method in class weka.dl4j.layers.BatchNormalization
 
getEpsilon() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getEpsilon() - Method in class weka.dl4j.layers.DenseLayer
 
getEpsilon() - Method in class weka.dl4j.layers.OutputLayer
 
getEpsilon() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getFilterType() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getGamma() - Method in class weka.dl4j.layers.BatchNormalization
 
getGradientNormalization() - Method in class weka.dl4j.layers.BatchNormalization
 
getGradientNormalization() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getGradientNormalization() - Method in class weka.dl4j.layers.DenseLayer
 
getGradientNormalization() - Method in class weka.dl4j.layers.OutputLayer
 
getGradientNormalization() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getGradientNormalizationThreshold() - Method in class weka.dl4j.layers.BatchNormalization
 
getGradientNormalizationThreshold() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getGradientNormalizationThreshold() - Method in class weka.dl4j.layers.DenseLayer
 
getGradientNormalizationThreshold() - Method in class weka.dl4j.layers.OutputLayer
 
getGradientNormalizationThreshold() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getHeight() - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
 
getHeight() - Method in class weka.dl4j.iterators.ImageDataSetIterator
 
getImagesLocation() - Method in class weka.dl4j.iterators.ImageDataSetIterator
 
getIterationCount() - Method in class weka.dl4j.NeuralNetConfiguration
 
getIterator(Instances, int) - Method in class weka.dl4j.iterators.AbstractDataSetIterator
Returns the actual iterator.
getIterator(Instances, int, int) - Method in class weka.dl4j.iterators.AbstractDataSetIterator
Returns the actual iterator.
getIterator(Instances, int, int) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
Returns the actual iterator.
getIterator(Instances, int, int) - Method in class weka.dl4j.iterators.DefaultInstancesIterator
Returns the actual iterator.
getIterator(Instances, int, int) - Method in class weka.dl4j.iterators.ImageDataSetIterator
This method returns the iterator.
getKernelSize() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getKernelSize() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getKernelSizeX() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getKernelSizeX() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getKernelSizeY() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getKernelSizeY() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getL1() - Method in class weka.dl4j.layers.BatchNormalization
 
getL1() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getL1() - Method in class weka.dl4j.layers.DenseLayer
 
getL1() - Method in class weka.dl4j.layers.OutputLayer
 
getL1() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getL1Bias() - Method in class weka.dl4j.layers.BatchNormalization
 
getL1Bias() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getL1Bias() - Method in class weka.dl4j.layers.DenseLayer
 
getL1Bias() - Method in class weka.dl4j.layers.OutputLayer
 
getL1Bias() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getL2() - Method in class weka.dl4j.layers.BatchNormalization
 
getL2() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getL2() - Method in class weka.dl4j.layers.DenseLayer
 
getL2() - Method in class weka.dl4j.layers.OutputLayer
 
getL2() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getL2Bias() - Method in class weka.dl4j.layers.BatchNormalization
 
getL2Bias() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getL2Bias() - Method in class weka.dl4j.layers.DenseLayer
 
getL2Bias() - Method in class weka.dl4j.layers.OutputLayer
 
getL2Bias() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getLabels() - Method in class weka.dl4j.ShufflingDataSetIterator
Gets the labels.
getLayerName() - Method in class weka.dl4j.layers.BatchNormalization
 
getLayerName() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getLayerName() - Method in class weka.dl4j.layers.DenseLayer
 
getLayerName() - Method in class weka.dl4j.layers.OutputLayer
 
getLayerName() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getLayers() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getLeakyreluAlpha() - Method in class weka.dl4j.NeuralNetConfiguration
 
getLearningRate() - Method in class weka.dl4j.layers.BatchNormalization
 
getLearningRate() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getLearningRate() - Method in class weka.dl4j.layers.DenseLayer
 
getLearningRate() - Method in class weka.dl4j.layers.OutputLayer
 
getLearningRate() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getLearningRatePolicy() - Method in class weka.dl4j.NeuralNetConfiguration
 
getLearningRateSchedule() - Method in class weka.dl4j.layers.BatchNormalization
 
getLearningRateSchedule() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getLearningRateSchedule() - Method in class weka.dl4j.layers.DenseLayer
 
getLearningRateSchedule() - Method in class weka.dl4j.layers.OutputLayer
 
getLearningRateSchedule() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getLockGammaAndBeta() - Method in class weka.dl4j.layers.BatchNormalization
 
getLogFile() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Get the log file
getLossFn() - Method in class weka.dl4j.layers.OutputLayer
 
getLower() - Method in class weka.dl4j.distribution.UniformDistribution
 
getLrPolicyDecayRate() - Method in class weka.dl4j.NeuralNetConfiguration
 
getLrPolicyPower() - Method in class weka.dl4j.NeuralNetConfiguration
 
getLrPolicySteps() - Method in class weka.dl4j.NeuralNetConfiguration
 
getMaxNumLineSearchIterations() - Method in class weka.dl4j.NeuralNetConfiguration
 
getMean() - Method in class weka.dl4j.distribution.NormalDistribution
 
getMomentum() - Method in class weka.dl4j.layers.BatchNormalization
 
getMomentum() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getMomentum() - Method in class weka.dl4j.layers.DenseLayer
 
getMomentum() - Method in class weka.dl4j.layers.OutputLayer
 
getMomentum() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getMomentumSchedule() - Method in class weka.dl4j.layers.BatchNormalization
 
getMomentumSchedule() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getMomentumSchedule() - Method in class weka.dl4j.layers.DenseLayer
 
getMomentumSchedule() - Method in class weka.dl4j.layers.OutputLayer
 
getMomentumSchedule() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getNeuralNetConfiguration() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getNIn() - Method in class weka.dl4j.layers.BatchNormalization
 
getNIn() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getNIn() - Method in class weka.dl4j.layers.DenseLayer
 
getNIn() - Method in class weka.dl4j.layers.OutputLayer
 
getNoMinibatch() - Method in class weka.dl4j.layers.BatchNormalization
 
getNOut() - Method in class weka.dl4j.layers.BatchNormalization
 
getNOut() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getNOut() - Method in class weka.dl4j.layers.DenseLayer
 
getNOut() - Method in class weka.dl4j.layers.OutputLayer
 
getNumAttributes(Instances) - Method in class weka.dl4j.iterators.AbstractDataSetIterator
Get the number of predictor attributes for this iterator.
getNumAttributes(Instances) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
Returns the number of predictor attributes for this dataset.
getNumAttributes(Instances) - Method in class weka.dl4j.iterators.DefaultInstancesIterator
Returns the number of predictor attributes for this dataset.
getNumAttributes(Instances) - Method in class weka.dl4j.iterators.ImageDataSetIterator
This just returns the number of channels.
getNumChannels() - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
 
getNumChannels() - Method in class weka.dl4j.iterators.ImageDataSetIterator
 
getNumEpochs() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getNumIterations() - Method in class weka.dl4j.NeuralNetConfiguration
 
getOptimizationAlgo() - Method in class weka.dl4j.NeuralNetConfiguration
 
getOptions() - Method in class weka.dl4j.activations.ActivationCube
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationELU
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationHardSigmoid
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationHardTanH
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationIdentity
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationLReLU
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationRationalTanh
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationReLU
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationRReLU
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationSigmoid
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationSoftmax
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationSoftPlus
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationSoftSign
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.activations.ActivationTanH
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.distribution.BinomialDistribution
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.distribution.NormalDistribution
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.distribution.UniformDistribution
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.iterators.AbstractDataSetIterator
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.BatchNormalization
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.ConvolutionLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.DenseLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.OutputLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.layers.SubsamplingLayer
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossCosineProximity
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossHinge
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossKLD
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossL1
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossL2
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossMAE
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossMAPE
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossMCXENT
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossMSE
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossMSLE
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossPoisson
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.NeuralNetConfiguration
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.stepfunctions.GradientStepFunction
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
Gets the current settings of the Classifier.
getOptions() - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
Gets the current settings of the Classifier.
getPadding() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getPadding() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getPaddingX() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getPaddingX() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getPaddingY() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getPaddingY() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getPnorm() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getPoolingType() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getPreProcessor() - Method in class weka.dl4j.ShufflingDataSetIterator
Gets the preprocessor.
getProbabilityOfSuccess() - Method in class weka.dl4j.distribution.BinomialDistribution
 
getQueueSize() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
getRho() - Method in class weka.dl4j.layers.BatchNormalization
 
getRho() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getRho() - Method in class weka.dl4j.layers.DenseLayer
 
getRho() - Method in class weka.dl4j.layers.OutputLayer
 
getRho() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getRmsDecay() - Method in class weka.dl4j.layers.BatchNormalization
 
getRmsDecay() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getRmsDecay() - Method in class weka.dl4j.layers.DenseLayer
 
getRmsDecay() - Method in class weka.dl4j.layers.OutputLayer
 
getRmsDecay() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getSeed() - Method in class weka.dl4j.NeuralNetConfiguration
 
getStd() - Method in class weka.dl4j.distribution.NormalDistribution
 
getStepFunction() - Method in class weka.dl4j.NeuralNetConfiguration
 
getStride() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getStride() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getStrideX() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getStrideX() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getStrideY() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getStrideY() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getTrainBatchSize() - Method in class weka.dl4j.iterators.AbstractDataSetIterator
Getting the training batch size
getTrainBatchSize() - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
 
getTrainBatchSize() - Method in class weka.dl4j.iterators.DefaultInstancesIterator
 
getTrainBatchSize() - Method in class weka.dl4j.iterators.ImageDataSetIterator
 
getUpdater() - Method in class weka.dl4j.layers.BatchNormalization
 
getUpdater() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getUpdater() - Method in class weka.dl4j.layers.DenseLayer
 
getUpdater() - Method in class weka.dl4j.layers.OutputLayer
 
getUpdater() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getUpper() - Method in class weka.dl4j.distribution.UniformDistribution
 
getWeightInit() - Method in class weka.dl4j.layers.BatchNormalization
 
getWeightInit() - Method in class weka.dl4j.layers.ConvolutionLayer
 
getWeightInit() - Method in class weka.dl4j.layers.DenseLayer
 
getWeightInit() - Method in class weka.dl4j.layers.OutputLayer
 
getWeightInit() - Method in class weka.dl4j.layers.SubsamplingLayer
 
getWidth() - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
 
getWidth() - Method in class weka.dl4j.iterators.ImageDataSetIterator
 
globalInfo() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
globalInfo() - Method in class weka.dl4j.layers.BatchNormalization
Global info.
globalInfo() - Method in class weka.dl4j.layers.ConvolutionLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.DenseLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.OutputLayer
Global info.
globalInfo() - Method in class weka.dl4j.layers.SubsamplingLayer
Global info.
GradientStepFunction - Class in weka.dl4j.stepfunctions
A version of DeepLearning4j's GradientStepFunction that implements WEKA option handling.
GradientStepFunction() - Constructor for class weka.dl4j.stepfunctions.GradientStepFunction
 

H

hasNext() - Method in class weka.dl4j.ShufflingDataSetIterator
Whether another batch of data is still available.

I

ImageDataSetIterator - Class in weka.dl4j.iterators
An iterator that loads images.
ImageDataSetIterator() - Constructor for class weka.dl4j.iterators.ImageDataSetIterator
 
implementsMoreEfficientBatchPrediction() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Performs efficient batch prediction
initialize(InputSplit) - Method in class weka.dl4j.EasyImageRecordReader
Initializes the iterators.
initializeClassifier(Instances) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
The method used to initialize the classifier.
inputColumns() - Method in class weka.dl4j.ShufflingDataSetIterator
Returns the number of input columns.
instancesToDataSet(Instances) - Static method in class weka.classifiers.functions.dl4j.Utils
Converts a set of training instances to a DataSet.
instanceToINDArray(Instance) - Static method in class weka.classifiers.functions.dl4j.Utils
Converts an instance to an INDArray.
invoke() - Method in class weka.dl4j.FileIterationListener
No-op method.
invoked() - Method in class weka.dl4j.FileIterationListener
Always returns false.
isLockGammaBeta() - Method in class weka.dl4j.layers.BatchNormalization
 
isMinibatch() - Method in class weka.dl4j.layers.BatchNormalization
 
isMiniBatch() - Method in class weka.dl4j.NeuralNetConfiguration
 
isMinimize() - Method in class weka.dl4j.NeuralNetConfiguration
 
isPretrain() - Method in class weka.dl4j.NeuralNetConfiguration
 
isUseDropConnect() - Method in class weka.dl4j.NeuralNetConfiguration
 
isUseRegularization() - Method in class weka.dl4j.NeuralNetConfiguration
 
iterationDone(Model, int) - Method in class weka.dl4j.FileIterationListener
Method that gets called when an iteration is done.

L

listOptions() - Method in class weka.dl4j.activations.ActivationCube
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationELU
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationHardSigmoid
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationHardTanH
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationIdentity
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationLReLU
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationRationalTanh
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationReLU
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationRReLU
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationSigmoid
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationSoftmax
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationSoftPlus
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationSoftSign
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.activations.ActivationTanH
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.distribution.BinomialDistribution
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.distribution.NormalDistribution
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.distribution.UniformDistribution
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.iterators.AbstractDataSetIterator
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.BatchNormalization
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.ConvolutionLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.DenseLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.OutputLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.layers.SubsamplingLayer
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossCosineProximity
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossHinge
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossKLD
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossL1
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossL2
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossMAE
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossMAPE
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossMCXENT
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossMSE
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossMSLE
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossPoisson
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.NeuralNetConfiguration
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.stepfunctions.GradientStepFunction
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
Returns an enumeration describing the available options.
listOptions() - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
Returns an enumeration describing the available options.
LossBinaryXENT - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossBinaryXENT that implements WEKA option handling.
LossBinaryXENT() - Constructor for class weka.dl4j.lossfunctions.LossBinaryXENT
 
LossCosineProximity - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossCosineProximity that implements WEKA option handling.
LossCosineProximity() - Constructor for class weka.dl4j.lossfunctions.LossCosineProximity
 
LossHinge - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossHinge that implements WEKA option handling.
LossHinge() - Constructor for class weka.dl4j.lossfunctions.LossHinge
 
LossKLD - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossKLD that implements WEKA option handling.
LossKLD() - Constructor for class weka.dl4j.lossfunctions.LossKLD
 
LossL1 - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossL1 that implements WEKA option handling.
LossL1() - Constructor for class weka.dl4j.lossfunctions.LossL1
 
LossL2 - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossL2 that implements WEKA option handling.
LossL2() - Constructor for class weka.dl4j.lossfunctions.LossL2
 
LossMAE - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossMAE that implements WEKA option handling.
LossMAE() - Constructor for class weka.dl4j.lossfunctions.LossMAE
 
LossMAPE - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossMAPE that implements WEKA option handling.
LossMAPE() - Constructor for class weka.dl4j.lossfunctions.LossMAPE
 
LossMCXENT - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossMCXENT that implements WEKA option handling.
LossMCXENT() - Constructor for class weka.dl4j.lossfunctions.LossMCXENT
 
LossMSE - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossMSE that implements WEKA option handling.
LossMSE() - Constructor for class weka.dl4j.lossfunctions.LossMSE
 
LossMSLE - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossMSLE that implements WEKA option handling.
LossMSLE() - Constructor for class weka.dl4j.lossfunctions.LossMSLE
 
LossNegativeLogLikelihood - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossNegativeLogLikelihood that implements WEKA option handling.
LossNegativeLogLikelihood() - Constructor for class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
 
LossPoisson - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossPoisson that implements WEKA option handling.
LossPoisson() - Constructor for class weka.dl4j.lossfunctions.LossPoisson
 
LossSquaredHinge - Class in weka.dl4j.lossfunctions
A version of DeepLearning4j's LossSquaredHinge that implements WEKA option handling.
LossSquaredHinge() - Constructor for class weka.dl4j.lossfunctions.LossSquaredHinge
 

M

main(String[]) - Static method in class weka.classifiers.functions.Dl4jMlpClassifier
The main method for running this class.

N

NegativeDefaultStepFunction - Class in weka.dl4j.stepfunctions
A version of DeepLearning4j's NegativeDefaultStepFunction that implements WEKA option handling.
NegativeDefaultStepFunction() - Constructor for class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
 
NegativeGradientStepFunction - Class in weka.dl4j.stepfunctions
A version of DeepLearning4j's NegativeGradientStepFunction that implements WEKA option handling.
NegativeGradientStepFunction() - Constructor for class weka.dl4j.stepfunctions.NegativeGradientStepFunction
 
NeuralNetConfiguration - Class in weka.dl4j
A version of DeepLearning4j's NeuralNetConfiguration that implements WEKA option handling.
NeuralNetConfiguration() - Constructor for class weka.dl4j.NeuralNetConfiguration
Constructor that provides default values for the settings.
next() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Perform another epoch.
next() - Method in class weka.dl4j.EasyImageRecordReader
Gets the next element
next() - Method in class weka.dl4j.ShufflingDataSetIterator
Returns the next mini batch of data.
next(int) - Method in class weka.dl4j.ShufflingDataSetIterator
Returns a batch of the given size
NormalDistribution - Class in weka.dl4j.distribution
A version of DeepLearning4j's NormalDistribution that implements WEKA option handling.
NormalDistribution() - Constructor for class weka.dl4j.distribution.NormalDistribution
Constructions normal distribution with mean 0 and unit variance.
numExamples() - Method in class weka.dl4j.ShufflingDataSetIterator
The number of examples in the dataset.

O

OutputLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's OutputLayer that implements WEKA option handling.
OutputLayer() - Constructor for class weka.dl4j.layers.OutputLayer
Constructor for setting some defaults.

P

preProcess(DataSet) - Method in class weka.dl4j.ScaleImagePixelsPreProcessor
Divides all intensity values by 255.

R

record(URI, DataInputStream) - Method in class weka.dl4j.EasyImageRecordReader
A method that still needs to be implemented.
remove() - Method in class weka.dl4j.ShufflingDataSetIterator
Enables removing of a mini-batch.
reset() - Method in class weka.dl4j.EasyImageRecordReader
Resets the record reader.
reset() - Method in class weka.dl4j.ShufflingDataSetIterator
Resets the cursor.
resetSupported() - Method in class weka.dl4j.ShufflingDataSetIterator
Whether the iterator can be reset.
RNNinstancesToDataSet(Instances) - Static method in class weka.classifiers.functions.dl4j.Utils
Converts a set of training instances corresponding to a time series to a DataSet.

S

ScaleImagePixelsPreProcessor - Class in weka.dl4j
A simple preprocessor that divides all values in the dataset by 255.
ScaleImagePixelsPreProcessor() - Constructor for class weka.dl4j.ScaleImagePixelsPreProcessor
 
setActivationFn(IActivation) - Method in class weka.dl4j.layers.BatchNormalization
 
setActivationFn(IActivation) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setActivationFn(IActivation) - Method in class weka.dl4j.layers.DenseLayer
 
setActivationFn(IActivation) - Method in class weka.dl4j.layers.OutputLayer
 
setActivationFn(IActivation) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setActivationFunction(IActivation) - Method in class weka.dl4j.layers.BatchNormalization
 
setActivationFunction(IActivation) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setActivationFunction(IActivation) - Method in class weka.dl4j.layers.DenseLayer
 
setActivationFunction(IActivation) - Method in class weka.dl4j.layers.OutputLayer
 
setActivationFunction(IActivation) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setAdamMeanDecay(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setAdamMeanDecay(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setAdamMeanDecay(double) - Method in class weka.dl4j.layers.DenseLayer
 
setAdamMeanDecay(double) - Method in class weka.dl4j.layers.OutputLayer
 
setAdamMeanDecay(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setAdamVarDecay(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setAdamVarDecay(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setAdamVarDecay(double) - Method in class weka.dl4j.layers.DenseLayer
 
setAdamVarDecay(double) - Method in class weka.dl4j.layers.OutputLayer
 
setAdamVarDecay(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setBeta(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setBiasInit(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setBiasInit(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setBiasInit(double) - Method in class weka.dl4j.layers.DenseLayer
 
setBiasInit(double) - Method in class weka.dl4j.layers.OutputLayer
 
setBiasInit(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setBiasL1(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setBiasL1(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setBiasL1(double) - Method in class weka.dl4j.layers.DenseLayer
 
setBiasL1(double) - Method in class weka.dl4j.layers.OutputLayer
 
setBiasL1(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setBiasL2(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setBiasL2(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setBiasL2(double) - Method in class weka.dl4j.layers.DenseLayer
 
setBiasL2(double) - Method in class weka.dl4j.layers.OutputLayer
 
setBiasL2(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setBiasLearningRate(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setBiasLearningRate(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setBiasLearningRate(double) - Method in class weka.dl4j.layers.DenseLayer
 
setBiasLearningRate(double) - Method in class weka.dl4j.layers.OutputLayer
 
setBiasLearningRate(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setConvolutionMode(ConvolutionMode) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setConvolutionMode(ConvolutionMode) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setCudnnAlgoMode(ConvolutionLayer.AlgoMode) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setDataSetIterator(AbstractDataSetIterator) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setDecay(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setDist(Distribution) - Method in class weka.dl4j.layers.BatchNormalization
 
setDist(Distribution) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setDist(Distribution) - Method in class weka.dl4j.layers.DenseLayer
 
setDist(Distribution) - Method in class weka.dl4j.layers.OutputLayer
 
setDist(Distribution) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setDropOut(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setDropOut(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setDropOut(double) - Method in class weka.dl4j.layers.DenseLayer
 
setDropOut(double) - Method in class weka.dl4j.layers.OutputLayer
 
setDropOut(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setEps(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setEps(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setEpsilon(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setEpsilon(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setEpsilon(double) - Method in class weka.dl4j.layers.DenseLayer
 
setEpsilon(double) - Method in class weka.dl4j.layers.OutputLayer
 
setEpsilon(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setFilterType(SelectedTag) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setGamma(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setGradientNormalization(GradientNormalization) - Method in class weka.dl4j.layers.BatchNormalization
 
setGradientNormalization(GradientNormalization) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setGradientNormalization(GradientNormalization) - Method in class weka.dl4j.layers.DenseLayer
 
setGradientNormalization(GradientNormalization) - Method in class weka.dl4j.layers.OutputLayer
 
setGradientNormalization(GradientNormalization) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setGradientNormalizationThreshold(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setGradientNormalizationThreshold(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setGradientNormalizationThreshold(double) - Method in class weka.dl4j.layers.DenseLayer
 
setGradientNormalizationThreshold(double) - Method in class weka.dl4j.layers.OutputLayer
 
setGradientNormalizationThreshold(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setHeight(int) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
 
setHeight(int) - Method in class weka.dl4j.iterators.ImageDataSetIterator
 
setImagesLocation(File) - Method in class weka.dl4j.iterators.ImageDataSetIterator
 
setIterationCount(int) - Method in class weka.dl4j.NeuralNetConfiguration
 
setKernelSize(int[]) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setKernelSize(int[]) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setKernelSizeX(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setKernelSizeX(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setKernelSizeY(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setKernelSizeY(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setL1(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setL1(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setL1(double) - Method in class weka.dl4j.layers.DenseLayer
 
setL1(double) - Method in class weka.dl4j.layers.OutputLayer
 
setL1(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setL1Bias(int) - Method in class weka.dl4j.layers.BatchNormalization
 
setL1Bias(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setL1Bias(int) - Method in class weka.dl4j.layers.DenseLayer
 
setL1Bias(int) - Method in class weka.dl4j.layers.OutputLayer
 
setL1Bias(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setL2(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setL2(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setL2(double) - Method in class weka.dl4j.layers.DenseLayer
 
setL2(double) - Method in class weka.dl4j.layers.OutputLayer
 
setL2(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setL2Bias(int) - Method in class weka.dl4j.layers.BatchNormalization
 
setL2Bias(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setL2Bias(int) - Method in class weka.dl4j.layers.DenseLayer
 
setL2Bias(int) - Method in class weka.dl4j.layers.OutputLayer
 
setL2Bias(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setLayerName(String) - Method in class weka.dl4j.layers.BatchNormalization
 
setLayerName(String) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setLayerName(String) - Method in class weka.dl4j.layers.DenseLayer
 
setLayerName(String) - Method in class weka.dl4j.layers.OutputLayer
 
setLayerName(String) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setLayers(Layer[]) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setLeakyreluAlpha(double) - Method in class weka.dl4j.NeuralNetConfiguration
 
setLearningRate(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setLearningRate(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setLearningRate(double) - Method in class weka.dl4j.layers.DenseLayer
 
setLearningRate(double) - Method in class weka.dl4j.layers.OutputLayer
 
setLearningRate(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setLearningRatePolicy(LearningRatePolicy) - Method in class weka.dl4j.NeuralNetConfiguration
 
setLearningRateSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.BatchNormalization
 
setLearningRateSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setLearningRateSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.DenseLayer
 
setLearningRateSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.OutputLayer
 
setLearningRateSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setLockGammaAndBeta(boolean) - Method in class weka.dl4j.layers.BatchNormalization
 
setLockGammaBeta(boolean) - Method in class weka.dl4j.layers.BatchNormalization
 
setLogFile(File) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Set the log file
setLossFn(ILossFunction) - Method in class weka.dl4j.layers.OutputLayer
 
setLower(double) - Method in class weka.dl4j.distribution.UniformDistribution
 
setLrPolicyDecayRate(double) - Method in class weka.dl4j.NeuralNetConfiguration
 
setLrPolicyPower(double) - Method in class weka.dl4j.NeuralNetConfiguration
 
setLrPolicySteps(double) - Method in class weka.dl4j.NeuralNetConfiguration
 
setMaxNumLineSearchIterations(int) - Method in class weka.dl4j.NeuralNetConfiguration
 
setMean(double) - Method in class weka.dl4j.distribution.NormalDistribution
 
setMinibatch(boolean) - Method in class weka.dl4j.layers.BatchNormalization
 
setMiniBatch(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
 
setMinimize(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
 
setMomentum(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setMomentum(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setMomentum(double) - Method in class weka.dl4j.layers.DenseLayer
 
setMomentum(double) - Method in class weka.dl4j.layers.OutputLayer
 
setMomentum(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setMomentumSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.BatchNormalization
 
setMomentumSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setMomentumSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.DenseLayer
 
setMomentumSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.OutputLayer
 
setMomentumSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setNeuralNetConfiguration(NeuralNetConfiguration) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setNIn(int) - Method in class weka.dl4j.layers.BatchNormalization
 
setNIn(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setNIn(int) - Method in class weka.dl4j.layers.DenseLayer
 
setNIn(int) - Method in class weka.dl4j.layers.OutputLayer
 
setNoMinibatch(boolean) - Method in class weka.dl4j.layers.BatchNormalization
 
setNOut(int) - Method in class weka.dl4j.layers.BatchNormalization
 
setNOut(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setNOut(int) - Method in class weka.dl4j.layers.DenseLayer
 
setNOut(int) - Method in class weka.dl4j.layers.OutputLayer
 
setNumChannels(int) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
 
setNumChannels(int) - Method in class weka.dl4j.iterators.ImageDataSetIterator
 
setNumEpochs(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setNumIterations(int) - Method in class weka.dl4j.NeuralNetConfiguration
 
setOptimizationAlgo(OptimizationAlgorithm) - Method in class weka.dl4j.NeuralNetConfiguration
 
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationCube
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationELU
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationHardSigmoid
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationHardTanH
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationIdentity
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationLReLU
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationRationalTanh
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationReLU
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationRReLU
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSigmoid
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSoftmax
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSoftPlus
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSoftSign
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.activations.ActivationTanH
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.distribution.BinomialDistribution
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.distribution.NormalDistribution
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.distribution.UniformDistribution
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.iterators.AbstractDataSetIterator
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.BatchNormalization
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.ConvolutionLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.DenseLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.OutputLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.layers.SubsamplingLayer
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossCosineProximity
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossHinge
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossKLD
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossL1
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossL2
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMAE
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMAPE
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMCXENT
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMSE
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMSLE
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossPoisson
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.NeuralNetConfiguration
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.stepfunctions.GradientStepFunction
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
Parses a given list of options.
setOptions(String[]) - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
Parses a given list of options.
setPadding(int[]) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setPadding(int[]) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setPaddingX(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setPaddingX(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setPaddingY(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setPaddingY(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setPnorm(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setPoolingType(PoolingType) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setPreProcessor(DataSetPreProcessor) - Method in class weka.dl4j.ShufflingDataSetIterator
Sets the preprocessor.
setPretrain(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
 
setProbabilityOfSuccess(double) - Method in class weka.dl4j.distribution.BinomialDistribution
 
setQueueSize(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
 
setRho(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setRho(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setRho(double) - Method in class weka.dl4j.layers.DenseLayer
 
setRho(double) - Method in class weka.dl4j.layers.OutputLayer
 
setRho(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setRmsDecay(double) - Method in class weka.dl4j.layers.BatchNormalization
 
setRmsDecay(double) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setRmsDecay(double) - Method in class weka.dl4j.layers.DenseLayer
 
setRmsDecay(double) - Method in class weka.dl4j.layers.OutputLayer
 
setRmsDecay(double) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setSeed(long) - Method in class weka.dl4j.NeuralNetConfiguration
 
setStd(double) - Method in class weka.dl4j.distribution.NormalDistribution
 
setStepFunction(StepFunction) - Method in class weka.dl4j.NeuralNetConfiguration
 
setStride(int[]) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setStride(int[]) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setStrideX(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setStrideX(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setStrideY(int) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setStrideY(int) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setTrainBatchSize(int) - Method in class weka.dl4j.iterators.AbstractDataSetIterator
Setting the training batch size
setTrainBatchSize(int) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
 
setTrainBatchSize(int) - Method in class weka.dl4j.iterators.DefaultInstancesIterator
 
setTrainBatchSize(int) - Method in class weka.dl4j.iterators.ImageDataSetIterator
 
setUpdater(Updater) - Method in class weka.dl4j.layers.BatchNormalization
 
setUpdater(Updater) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setUpdater(Updater) - Method in class weka.dl4j.layers.DenseLayer
 
setUpdater(Updater) - Method in class weka.dl4j.layers.OutputLayer
 
setUpdater(Updater) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setUpper(double) - Method in class weka.dl4j.distribution.UniformDistribution
 
setUseDropConnect(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
 
setUseRegularization(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
 
setWeightInit(WeightInit) - Method in class weka.dl4j.layers.BatchNormalization
 
setWeightInit(WeightInit) - Method in class weka.dl4j.layers.ConvolutionLayer
 
setWeightInit(WeightInit) - Method in class weka.dl4j.layers.DenseLayer
 
setWeightInit(WeightInit) - Method in class weka.dl4j.layers.OutputLayer
 
setWeightInit(WeightInit) - Method in class weka.dl4j.layers.SubsamplingLayer
 
setWidth(int) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
 
setWidth(int) - Method in class weka.dl4j.iterators.ImageDataSetIterator
 
ShufflingDataSetIterator - Class in weka.dl4j
An nd4j mini-batch iterator that shuffles the data whenever it is reset.
ShufflingDataSetIterator(DataSet, int, int) - Constructor for class weka.dl4j.ShufflingDataSetIterator
Constructs a new shuffling iterator.
SubsamplingLayer - Class in weka.dl4j.layers
A version of DeepLearning4j's SubsamplingLayer that implements WEKA option handling.
SubsamplingLayer() - Constructor for class weka.dl4j.layers.SubsamplingLayer
Constructor for setting some defaults.

T

TAGS_FILTER - Static variable in class weka.classifiers.functions.Dl4jMlpClassifier
The filter to apply to the training data
toString() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
Returns a string describing the model.
totalExamples() - Method in class weka.dl4j.ShufflingDataSetIterator
Returns the total number of examples in the dataset.
totalOutcomes() - Method in class weka.dl4j.ShufflingDataSetIterator
Returns the total number of labels.

U

UniformDistribution - Class in weka.dl4j.distribution
A version of DeepLearning4j's UniformDistribution that implements WEKA option handling.
UniformDistribution() - Constructor for class weka.dl4j.distribution.UniformDistribution
Constructions normal distribution with lower limit -1 and upper limit 1.
Utils - Class in weka.classifiers.functions.dl4j
Utility routines for the Dl4jMlpClassifier
Utils() - Constructor for class weka.classifiers.functions.dl4j.Utils
 

V

validate(Instances) - Method in class weka.dl4j.iterators.ImageDataSetIterator
Validates the input dataset

W

weka.classifiers.functions - package weka.classifiers.functions
 
weka.classifiers.functions.dl4j - package weka.classifiers.functions.dl4j
 
weka.dl4j - package weka.dl4j
 
weka.dl4j.activations - package weka.dl4j.activations
 
weka.dl4j.distribution - package weka.dl4j.distribution
 
weka.dl4j.iterators - package weka.dl4j.iterators
 
weka.dl4j.layers - package weka.dl4j.layers
 
weka.dl4j.lossfunctions - package weka.dl4j.lossfunctions
 
weka.dl4j.stepfunctions - package weka.dl4j.stepfunctions
 
A B C D E F G H I L M N O P R S T U V W 
Skip navigation links