- AbstractDataSetIterator - Class in weka.dl4j.iterators
-
An abstract iterator wrapper.
- AbstractDataSetIterator() - Constructor for class weka.dl4j.iterators.AbstractDataSetIterator
-
- ActivationCube - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationCube that implements WEKA option handling.
- ActivationCube() - Constructor for class weka.dl4j.activations.ActivationCube
-
- ActivationELU - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationELU that implements WEKA option handling.
- ActivationELU() - Constructor for class weka.dl4j.activations.ActivationELU
-
- ActivationHardSigmoid - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationHardSigmoid that implements WEKA option handling.
- ActivationHardSigmoid() - Constructor for class weka.dl4j.activations.ActivationHardSigmoid
-
- ActivationHardTanH - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationHardTanH that implements WEKA option handling.
- ActivationHardTanH() - Constructor for class weka.dl4j.activations.ActivationHardTanH
-
- ActivationIdentity - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationIdentity that implements WEKA option handling.
- ActivationIdentity() - Constructor for class weka.dl4j.activations.ActivationIdentity
-
- ActivationLReLU - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationLReLU that implements WEKA option handling.
- ActivationLReLU() - Constructor for class weka.dl4j.activations.ActivationLReLU
-
- ActivationRationalTanh - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationRationalTanh that implements WEKA option handling.
- ActivationRationalTanh() - Constructor for class weka.dl4j.activations.ActivationRationalTanh
-
- ActivationReLU - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationReLU that implements WEKA option handling.
- ActivationReLU() - Constructor for class weka.dl4j.activations.ActivationReLU
-
- ActivationRReLU - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationRReLU that implements WEKA option handling.
- ActivationRReLU() - Constructor for class weka.dl4j.activations.ActivationRReLU
-
- ActivationSigmoid - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationSigmoid that implements WEKA option handling.
- ActivationSigmoid() - Constructor for class weka.dl4j.activations.ActivationSigmoid
-
- ActivationSoftmax - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationSoftmax that implements WEKA option handling.
- ActivationSoftmax() - Constructor for class weka.dl4j.activations.ActivationSoftmax
-
- ActivationSoftPlus - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationSoftPlus that implements WEKA option handling.
- ActivationSoftPlus() - Constructor for class weka.dl4j.activations.ActivationSoftPlus
-
- ActivationSoftSign - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationSoftSign that implements WEKA option handling.
- ActivationSoftSign() - Constructor for class weka.dl4j.activations.ActivationSoftSign
-
- ActivationTanH - Class in weka.dl4j.activations
-
A version of DeepLearning4j's ActivationTanH that implements WEKA option handling.
- ActivationTanH() - Constructor for class weka.dl4j.activations.ActivationTanH
-
- asyncSupported() - Method in class weka.dl4j.ShufflingDataSetIterator
-
Whether the iterator can be used asynchronously.
- getActivationFn() - Method in class weka.dl4j.layers.BatchNormalization
-
- getActivationFn() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getActivationFn() - Method in class weka.dl4j.layers.DenseLayer
-
- getActivationFn() - Method in class weka.dl4j.layers.OutputLayer
-
- getActivationFn() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getActivationFunction() - Method in class weka.dl4j.layers.BatchNormalization
-
- getActivationFunction() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getActivationFunction() - Method in class weka.dl4j.layers.DenseLayer
-
- getActivationFunction() - Method in class weka.dl4j.layers.OutputLayer
-
- getActivationFunction() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getAdamMeanDecay() - Method in class weka.dl4j.layers.BatchNormalization
-
- getAdamMeanDecay() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getAdamMeanDecay() - Method in class weka.dl4j.layers.DenseLayer
-
- getAdamMeanDecay() - Method in class weka.dl4j.layers.OutputLayer
-
- getAdamMeanDecay() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getAdamVarDecay() - Method in class weka.dl4j.layers.BatchNormalization
-
- getAdamVarDecay() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getAdamVarDecay() - Method in class weka.dl4j.layers.DenseLayer
-
- getAdamVarDecay() - Method in class weka.dl4j.layers.OutputLayer
-
- getAdamVarDecay() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getBeta() - Method in class weka.dl4j.layers.BatchNormalization
-
- getBiasInit() - Method in class weka.dl4j.layers.BatchNormalization
-
- getBiasInit() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getBiasInit() - Method in class weka.dl4j.layers.DenseLayer
-
- getBiasInit() - Method in class weka.dl4j.layers.OutputLayer
-
- getBiasInit() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getBiasL1() - Method in class weka.dl4j.layers.BatchNormalization
-
- getBiasL1() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getBiasL1() - Method in class weka.dl4j.layers.DenseLayer
-
- getBiasL1() - Method in class weka.dl4j.layers.OutputLayer
-
- getBiasL1() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getBiasL2() - Method in class weka.dl4j.layers.BatchNormalization
-
- getBiasL2() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getBiasL2() - Method in class weka.dl4j.layers.DenseLayer
-
- getBiasL2() - Method in class weka.dl4j.layers.OutputLayer
-
- getBiasL2() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getBiasLearningRate() - Method in class weka.dl4j.layers.BatchNormalization
-
- getBiasLearningRate() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getBiasLearningRate() - Method in class weka.dl4j.layers.DenseLayer
-
- getBiasLearningRate() - Method in class weka.dl4j.layers.OutputLayer
-
- getBiasLearningRate() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getCapabilities() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Returns default capabilities of the classifier.
- getConvolutionMode() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getConvolutionMode() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getCudnnAlgoMode() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getDataSetIterator() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getDecay() - Method in class weka.dl4j.layers.BatchNormalization
-
- getDist() - Method in class weka.dl4j.layers.BatchNormalization
-
- getDist() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getDist() - Method in class weka.dl4j.layers.DenseLayer
-
- getDist() - Method in class weka.dl4j.layers.OutputLayer
-
- getDist() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getDropOut() - Method in class weka.dl4j.layers.BatchNormalization
-
- getDropOut() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getDropOut() - Method in class weka.dl4j.layers.DenseLayer
-
- getDropOut() - Method in class weka.dl4j.layers.OutputLayer
-
- getDropOut() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getEps() - Method in class weka.dl4j.layers.BatchNormalization
-
- getEps() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getEpsilon() - Method in class weka.dl4j.layers.BatchNormalization
-
- getEpsilon() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getEpsilon() - Method in class weka.dl4j.layers.DenseLayer
-
- getEpsilon() - Method in class weka.dl4j.layers.OutputLayer
-
- getEpsilon() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getFilterType() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getGamma() - Method in class weka.dl4j.layers.BatchNormalization
-
- getGradientNormalization() - Method in class weka.dl4j.layers.BatchNormalization
-
- getGradientNormalization() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getGradientNormalization() - Method in class weka.dl4j.layers.DenseLayer
-
- getGradientNormalization() - Method in class weka.dl4j.layers.OutputLayer
-
- getGradientNormalization() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getGradientNormalizationThreshold() - Method in class weka.dl4j.layers.BatchNormalization
-
- getGradientNormalizationThreshold() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getGradientNormalizationThreshold() - Method in class weka.dl4j.layers.DenseLayer
-
- getGradientNormalizationThreshold() - Method in class weka.dl4j.layers.OutputLayer
-
- getGradientNormalizationThreshold() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getHeight() - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
- getHeight() - Method in class weka.dl4j.iterators.ImageDataSetIterator
-
- getImagesLocation() - Method in class weka.dl4j.iterators.ImageDataSetIterator
-
- getIterationCount() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getIterator(Instances, int) - Method in class weka.dl4j.iterators.AbstractDataSetIterator
-
Returns the actual iterator.
- getIterator(Instances, int, int) - Method in class weka.dl4j.iterators.AbstractDataSetIterator
-
Returns the actual iterator.
- getIterator(Instances, int, int) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
Returns the actual iterator.
- getIterator(Instances, int, int) - Method in class weka.dl4j.iterators.DefaultInstancesIterator
-
Returns the actual iterator.
- getIterator(Instances, int, int) - Method in class weka.dl4j.iterators.ImageDataSetIterator
-
This method returns the iterator.
- getKernelSize() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getKernelSize() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getKernelSizeX() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getKernelSizeX() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getKernelSizeY() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getKernelSizeY() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getL1() - Method in class weka.dl4j.layers.BatchNormalization
-
- getL1() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getL1() - Method in class weka.dl4j.layers.DenseLayer
-
- getL1() - Method in class weka.dl4j.layers.OutputLayer
-
- getL1() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getL1Bias() - Method in class weka.dl4j.layers.BatchNormalization
-
- getL1Bias() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getL1Bias() - Method in class weka.dl4j.layers.DenseLayer
-
- getL1Bias() - Method in class weka.dl4j.layers.OutputLayer
-
- getL1Bias() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getL2() - Method in class weka.dl4j.layers.BatchNormalization
-
- getL2() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getL2() - Method in class weka.dl4j.layers.DenseLayer
-
- getL2() - Method in class weka.dl4j.layers.OutputLayer
-
- getL2() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getL2Bias() - Method in class weka.dl4j.layers.BatchNormalization
-
- getL2Bias() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getL2Bias() - Method in class weka.dl4j.layers.DenseLayer
-
- getL2Bias() - Method in class weka.dl4j.layers.OutputLayer
-
- getL2Bias() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getLabels() - Method in class weka.dl4j.ShufflingDataSetIterator
-
Gets the labels.
- getLayerName() - Method in class weka.dl4j.layers.BatchNormalization
-
- getLayerName() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getLayerName() - Method in class weka.dl4j.layers.DenseLayer
-
- getLayerName() - Method in class weka.dl4j.layers.OutputLayer
-
- getLayerName() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getLayers() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getLeakyreluAlpha() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getLearningRate() - Method in class weka.dl4j.layers.BatchNormalization
-
- getLearningRate() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getLearningRate() - Method in class weka.dl4j.layers.DenseLayer
-
- getLearningRate() - Method in class weka.dl4j.layers.OutputLayer
-
- getLearningRate() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getLearningRatePolicy() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getLearningRateSchedule() - Method in class weka.dl4j.layers.BatchNormalization
-
- getLearningRateSchedule() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getLearningRateSchedule() - Method in class weka.dl4j.layers.DenseLayer
-
- getLearningRateSchedule() - Method in class weka.dl4j.layers.OutputLayer
-
- getLearningRateSchedule() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getLockGammaAndBeta() - Method in class weka.dl4j.layers.BatchNormalization
-
- getLogFile() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Get the log file
- getLossFn() - Method in class weka.dl4j.layers.OutputLayer
-
- getLower() - Method in class weka.dl4j.distribution.UniformDistribution
-
- getLrPolicyDecayRate() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getLrPolicyPower() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getLrPolicySteps() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getMaxNumLineSearchIterations() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getMean() - Method in class weka.dl4j.distribution.NormalDistribution
-
- getMomentum() - Method in class weka.dl4j.layers.BatchNormalization
-
- getMomentum() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getMomentum() - Method in class weka.dl4j.layers.DenseLayer
-
- getMomentum() - Method in class weka.dl4j.layers.OutputLayer
-
- getMomentum() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getMomentumSchedule() - Method in class weka.dl4j.layers.BatchNormalization
-
- getMomentumSchedule() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getMomentumSchedule() - Method in class weka.dl4j.layers.DenseLayer
-
- getMomentumSchedule() - Method in class weka.dl4j.layers.OutputLayer
-
- getMomentumSchedule() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getNeuralNetConfiguration() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getNIn() - Method in class weka.dl4j.layers.BatchNormalization
-
- getNIn() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getNIn() - Method in class weka.dl4j.layers.DenseLayer
-
- getNIn() - Method in class weka.dl4j.layers.OutputLayer
-
- getNoMinibatch() - Method in class weka.dl4j.layers.BatchNormalization
-
- getNOut() - Method in class weka.dl4j.layers.BatchNormalization
-
- getNOut() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getNOut() - Method in class weka.dl4j.layers.DenseLayer
-
- getNOut() - Method in class weka.dl4j.layers.OutputLayer
-
- getNumAttributes(Instances) - Method in class weka.dl4j.iterators.AbstractDataSetIterator
-
Get the number of predictor attributes for this iterator.
- getNumAttributes(Instances) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
Returns the number of predictor attributes for this dataset.
- getNumAttributes(Instances) - Method in class weka.dl4j.iterators.DefaultInstancesIterator
-
Returns the number of predictor attributes for this dataset.
- getNumAttributes(Instances) - Method in class weka.dl4j.iterators.ImageDataSetIterator
-
This just returns the number of channels.
- getNumChannels() - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
- getNumChannels() - Method in class weka.dl4j.iterators.ImageDataSetIterator
-
- getNumEpochs() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getNumIterations() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getOptimizationAlgo() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getOptions() - Method in class weka.dl4j.activations.ActivationCube
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationELU
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationHardSigmoid
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationHardTanH
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationIdentity
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationLReLU
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationRationalTanh
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationReLU
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationRReLU
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationSigmoid
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationSoftmax
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationSoftPlus
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationSoftSign
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.activations.ActivationTanH
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.distribution.BinomialDistribution
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.distribution.NormalDistribution
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.distribution.UniformDistribution
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.iterators.AbstractDataSetIterator
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.BatchNormalization
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.ConvolutionLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.DenseLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.OutputLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.layers.SubsamplingLayer
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossCosineProximity
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossHinge
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossKLD
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossL1
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossL2
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossMAE
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossMAPE
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossMCXENT
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossMSE
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossMSLE
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossPoisson
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.NeuralNetConfiguration
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.stepfunctions.GradientStepFunction
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
-
Gets the current settings of the Classifier.
- getPadding() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getPadding() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getPaddingX() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getPaddingX() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getPaddingY() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getPaddingY() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getPnorm() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getPoolingType() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getPreProcessor() - Method in class weka.dl4j.ShufflingDataSetIterator
-
Gets the preprocessor.
- getProbabilityOfSuccess() - Method in class weka.dl4j.distribution.BinomialDistribution
-
- getQueueSize() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- getRho() - Method in class weka.dl4j.layers.BatchNormalization
-
- getRho() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getRho() - Method in class weka.dl4j.layers.DenseLayer
-
- getRho() - Method in class weka.dl4j.layers.OutputLayer
-
- getRho() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getRmsDecay() - Method in class weka.dl4j.layers.BatchNormalization
-
- getRmsDecay() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getRmsDecay() - Method in class weka.dl4j.layers.DenseLayer
-
- getRmsDecay() - Method in class weka.dl4j.layers.OutputLayer
-
- getRmsDecay() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getSeed() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getStd() - Method in class weka.dl4j.distribution.NormalDistribution
-
- getStepFunction() - Method in class weka.dl4j.NeuralNetConfiguration
-
- getStride() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getStride() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getStrideX() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getStrideX() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getStrideY() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getStrideY() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getTrainBatchSize() - Method in class weka.dl4j.iterators.AbstractDataSetIterator
-
Getting the training batch size
- getTrainBatchSize() - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
- getTrainBatchSize() - Method in class weka.dl4j.iterators.DefaultInstancesIterator
-
- getTrainBatchSize() - Method in class weka.dl4j.iterators.ImageDataSetIterator
-
- getUpdater() - Method in class weka.dl4j.layers.BatchNormalization
-
- getUpdater() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getUpdater() - Method in class weka.dl4j.layers.DenseLayer
-
- getUpdater() - Method in class weka.dl4j.layers.OutputLayer
-
- getUpdater() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getUpper() - Method in class weka.dl4j.distribution.UniformDistribution
-
- getWeightInit() - Method in class weka.dl4j.layers.BatchNormalization
-
- getWeightInit() - Method in class weka.dl4j.layers.ConvolutionLayer
-
- getWeightInit() - Method in class weka.dl4j.layers.DenseLayer
-
- getWeightInit() - Method in class weka.dl4j.layers.OutputLayer
-
- getWeightInit() - Method in class weka.dl4j.layers.SubsamplingLayer
-
- getWidth() - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
- getWidth() - Method in class weka.dl4j.iterators.ImageDataSetIterator
-
- globalInfo() - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- globalInfo() - Method in class weka.dl4j.layers.BatchNormalization
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.ConvolutionLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.DenseLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.OutputLayer
-
Global info.
- globalInfo() - Method in class weka.dl4j.layers.SubsamplingLayer
-
Global info.
- GradientStepFunction - Class in weka.dl4j.stepfunctions
-
A version of DeepLearning4j's GradientStepFunction that implements WEKA option handling.
- GradientStepFunction() - Constructor for class weka.dl4j.stepfunctions.GradientStepFunction
-
- listOptions() - Method in class weka.dl4j.activations.ActivationCube
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationELU
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationHardSigmoid
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationHardTanH
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationIdentity
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationLReLU
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationRationalTanh
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationReLU
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationRReLU
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationSigmoid
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationSoftmax
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationSoftPlus
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationSoftSign
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.activations.ActivationTanH
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.distribution.BinomialDistribution
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.distribution.NormalDistribution
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.distribution.UniformDistribution
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.iterators.AbstractDataSetIterator
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.BatchNormalization
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.ConvolutionLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.DenseLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.OutputLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.layers.SubsamplingLayer
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossCosineProximity
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossHinge
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossKLD
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossL1
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossL2
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossMAE
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossMAPE
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossMCXENT
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossMSE
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossMSLE
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossPoisson
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.NeuralNetConfiguration
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.stepfunctions.GradientStepFunction
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
-
Returns an enumeration describing the available options.
- listOptions() - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
-
Returns an enumeration describing the available options.
- LossBinaryXENT - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossBinaryXENT that implements WEKA option handling.
- LossBinaryXENT() - Constructor for class weka.dl4j.lossfunctions.LossBinaryXENT
-
- LossCosineProximity - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossCosineProximity that implements WEKA option handling.
- LossCosineProximity() - Constructor for class weka.dl4j.lossfunctions.LossCosineProximity
-
- LossHinge - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossHinge that implements WEKA option handling.
- LossHinge() - Constructor for class weka.dl4j.lossfunctions.LossHinge
-
- LossKLD - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossKLD that implements WEKA option handling.
- LossKLD() - Constructor for class weka.dl4j.lossfunctions.LossKLD
-
- LossL1 - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossL1 that implements WEKA option handling.
- LossL1() - Constructor for class weka.dl4j.lossfunctions.LossL1
-
- LossL2 - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossL2 that implements WEKA option handling.
- LossL2() - Constructor for class weka.dl4j.lossfunctions.LossL2
-
- LossMAE - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossMAE that implements WEKA option handling.
- LossMAE() - Constructor for class weka.dl4j.lossfunctions.LossMAE
-
- LossMAPE - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossMAPE that implements WEKA option handling.
- LossMAPE() - Constructor for class weka.dl4j.lossfunctions.LossMAPE
-
- LossMCXENT - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossMCXENT that implements WEKA option handling.
- LossMCXENT() - Constructor for class weka.dl4j.lossfunctions.LossMCXENT
-
- LossMSE - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossMSE that implements WEKA option handling.
- LossMSE() - Constructor for class weka.dl4j.lossfunctions.LossMSE
-
- LossMSLE - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossMSLE that implements WEKA option handling.
- LossMSLE() - Constructor for class weka.dl4j.lossfunctions.LossMSLE
-
- LossNegativeLogLikelihood - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossNegativeLogLikelihood that implements WEKA option handling.
- LossNegativeLogLikelihood() - Constructor for class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
-
- LossPoisson - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossPoisson that implements WEKA option handling.
- LossPoisson() - Constructor for class weka.dl4j.lossfunctions.LossPoisson
-
- LossSquaredHinge - Class in weka.dl4j.lossfunctions
-
A version of DeepLearning4j's LossSquaredHinge that implements WEKA option handling.
- LossSquaredHinge() - Constructor for class weka.dl4j.lossfunctions.LossSquaredHinge
-
- ScaleImagePixelsPreProcessor - Class in weka.dl4j
-
A simple preprocessor that divides all values in the dataset by 255.
- ScaleImagePixelsPreProcessor() - Constructor for class weka.dl4j.ScaleImagePixelsPreProcessor
-
- setActivationFn(IActivation) - Method in class weka.dl4j.layers.BatchNormalization
-
- setActivationFn(IActivation) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setActivationFn(IActivation) - Method in class weka.dl4j.layers.DenseLayer
-
- setActivationFn(IActivation) - Method in class weka.dl4j.layers.OutputLayer
-
- setActivationFn(IActivation) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setActivationFunction(IActivation) - Method in class weka.dl4j.layers.BatchNormalization
-
- setActivationFunction(IActivation) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setActivationFunction(IActivation) - Method in class weka.dl4j.layers.DenseLayer
-
- setActivationFunction(IActivation) - Method in class weka.dl4j.layers.OutputLayer
-
- setActivationFunction(IActivation) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setAdamMeanDecay(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setAdamMeanDecay(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setAdamMeanDecay(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setAdamMeanDecay(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setAdamMeanDecay(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setAdamVarDecay(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setAdamVarDecay(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setAdamVarDecay(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setAdamVarDecay(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setAdamVarDecay(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setBeta(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setBiasInit(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setBiasInit(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setBiasInit(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setBiasInit(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setBiasInit(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setBiasL1(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setBiasL1(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setBiasL1(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setBiasL1(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setBiasL1(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setBiasL2(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setBiasL2(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setBiasL2(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setBiasL2(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setBiasL2(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setBiasLearningRate(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setBiasLearningRate(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setBiasLearningRate(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setBiasLearningRate(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setBiasLearningRate(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setConvolutionMode(ConvolutionMode) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setConvolutionMode(ConvolutionMode) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setCudnnAlgoMode(ConvolutionLayer.AlgoMode) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setDataSetIterator(AbstractDataSetIterator) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setDecay(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setDist(Distribution) - Method in class weka.dl4j.layers.BatchNormalization
-
- setDist(Distribution) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setDist(Distribution) - Method in class weka.dl4j.layers.DenseLayer
-
- setDist(Distribution) - Method in class weka.dl4j.layers.OutputLayer
-
- setDist(Distribution) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setDropOut(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setDropOut(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setDropOut(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setDropOut(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setDropOut(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setEps(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setEps(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setEpsilon(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setEpsilon(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setEpsilon(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setEpsilon(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setEpsilon(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setFilterType(SelectedTag) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setGamma(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setGradientNormalization(GradientNormalization) - Method in class weka.dl4j.layers.BatchNormalization
-
- setGradientNormalization(GradientNormalization) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setGradientNormalization(GradientNormalization) - Method in class weka.dl4j.layers.DenseLayer
-
- setGradientNormalization(GradientNormalization) - Method in class weka.dl4j.layers.OutputLayer
-
- setGradientNormalization(GradientNormalization) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setGradientNormalizationThreshold(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setGradientNormalizationThreshold(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setGradientNormalizationThreshold(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setGradientNormalizationThreshold(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setGradientNormalizationThreshold(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setHeight(int) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
- setHeight(int) - Method in class weka.dl4j.iterators.ImageDataSetIterator
-
- setImagesLocation(File) - Method in class weka.dl4j.iterators.ImageDataSetIterator
-
- setIterationCount(int) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setKernelSize(int[]) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setKernelSize(int[]) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setKernelSizeX(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setKernelSizeX(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setKernelSizeY(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setKernelSizeY(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setL1(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setL1(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setL1(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setL1(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setL1(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setL1Bias(int) - Method in class weka.dl4j.layers.BatchNormalization
-
- setL1Bias(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setL1Bias(int) - Method in class weka.dl4j.layers.DenseLayer
-
- setL1Bias(int) - Method in class weka.dl4j.layers.OutputLayer
-
- setL1Bias(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setL2(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setL2(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setL2(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setL2(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setL2(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setL2Bias(int) - Method in class weka.dl4j.layers.BatchNormalization
-
- setL2Bias(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setL2Bias(int) - Method in class weka.dl4j.layers.DenseLayer
-
- setL2Bias(int) - Method in class weka.dl4j.layers.OutputLayer
-
- setL2Bias(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setLayerName(String) - Method in class weka.dl4j.layers.BatchNormalization
-
- setLayerName(String) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setLayerName(String) - Method in class weka.dl4j.layers.DenseLayer
-
- setLayerName(String) - Method in class weka.dl4j.layers.OutputLayer
-
- setLayerName(String) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setLayers(Layer[]) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setLeakyreluAlpha(double) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setLearningRate(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setLearningRate(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setLearningRate(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setLearningRate(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setLearningRate(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setLearningRatePolicy(LearningRatePolicy) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setLearningRateSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.BatchNormalization
-
- setLearningRateSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setLearningRateSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.DenseLayer
-
- setLearningRateSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.OutputLayer
-
- setLearningRateSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setLockGammaAndBeta(boolean) - Method in class weka.dl4j.layers.BatchNormalization
-
- setLockGammaBeta(boolean) - Method in class weka.dl4j.layers.BatchNormalization
-
- setLogFile(File) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
Set the log file
- setLossFn(ILossFunction) - Method in class weka.dl4j.layers.OutputLayer
-
- setLower(double) - Method in class weka.dl4j.distribution.UniformDistribution
-
- setLrPolicyDecayRate(double) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setLrPolicyPower(double) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setLrPolicySteps(double) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setMaxNumLineSearchIterations(int) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setMean(double) - Method in class weka.dl4j.distribution.NormalDistribution
-
- setMinibatch(boolean) - Method in class weka.dl4j.layers.BatchNormalization
-
- setMiniBatch(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setMinimize(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setMomentum(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setMomentum(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setMomentum(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setMomentum(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setMomentum(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setMomentumSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.BatchNormalization
-
- setMomentumSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setMomentumSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.DenseLayer
-
- setMomentumSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.OutputLayer
-
- setMomentumSchedule(Map<Integer, Double>) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setNeuralNetConfiguration(NeuralNetConfiguration) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setNIn(int) - Method in class weka.dl4j.layers.BatchNormalization
-
- setNIn(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setNIn(int) - Method in class weka.dl4j.layers.DenseLayer
-
- setNIn(int) - Method in class weka.dl4j.layers.OutputLayer
-
- setNoMinibatch(boolean) - Method in class weka.dl4j.layers.BatchNormalization
-
- setNOut(int) - Method in class weka.dl4j.layers.BatchNormalization
-
- setNOut(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setNOut(int) - Method in class weka.dl4j.layers.DenseLayer
-
- setNOut(int) - Method in class weka.dl4j.layers.OutputLayer
-
- setNumChannels(int) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
- setNumChannels(int) - Method in class weka.dl4j.iterators.ImageDataSetIterator
-
- setNumEpochs(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setNumIterations(int) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setOptimizationAlgo(OptimizationAlgorithm) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationCube
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationELU
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationHardSigmoid
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationHardTanH
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationIdentity
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationLReLU
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationRationalTanh
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationReLU
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationRReLU
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSigmoid
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSoftmax
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSoftPlus
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationSoftSign
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.activations.ActivationTanH
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.distribution.BinomialDistribution
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.distribution.NormalDistribution
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.distribution.UniformDistribution
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.iterators.AbstractDataSetIterator
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.BatchNormalization
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.ConvolutionLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.DenseLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.OutputLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.layers.SubsamplingLayer
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossBinaryXENT
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossCosineProximity
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossHinge
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossKLD
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossL1
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossL2
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMAE
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMAPE
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMCXENT
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMSE
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossMSLE
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossNegativeLogLikelihood
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossPoisson
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.lossfunctions.LossSquaredHinge
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.NeuralNetConfiguration
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.stepfunctions.DefaultStepFunction
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.stepfunctions.GradientStepFunction
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.stepfunctions.NegativeDefaultStepFunction
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.dl4j.stepfunctions.NegativeGradientStepFunction
-
Parses a given list of options.
- setPadding(int[]) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setPadding(int[]) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setPaddingX(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setPaddingX(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setPaddingY(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setPaddingY(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setPnorm(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setPoolingType(PoolingType) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setPreProcessor(DataSetPreProcessor) - Method in class weka.dl4j.ShufflingDataSetIterator
-
Sets the preprocessor.
- setPretrain(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setProbabilityOfSuccess(double) - Method in class weka.dl4j.distribution.BinomialDistribution
-
- setQueueSize(int) - Method in class weka.classifiers.functions.Dl4jMlpClassifier
-
- setRho(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setRho(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setRho(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setRho(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setRho(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setRmsDecay(double) - Method in class weka.dl4j.layers.BatchNormalization
-
- setRmsDecay(double) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setRmsDecay(double) - Method in class weka.dl4j.layers.DenseLayer
-
- setRmsDecay(double) - Method in class weka.dl4j.layers.OutputLayer
-
- setRmsDecay(double) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setSeed(long) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setStd(double) - Method in class weka.dl4j.distribution.NormalDistribution
-
- setStepFunction(StepFunction) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setStride(int[]) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setStride(int[]) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setStrideX(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setStrideX(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setStrideY(int) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setStrideY(int) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setTrainBatchSize(int) - Method in class weka.dl4j.iterators.AbstractDataSetIterator
-
Setting the training batch size
- setTrainBatchSize(int) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
- setTrainBatchSize(int) - Method in class weka.dl4j.iterators.DefaultInstancesIterator
-
- setTrainBatchSize(int) - Method in class weka.dl4j.iterators.ImageDataSetIterator
-
- setUpdater(Updater) - Method in class weka.dl4j.layers.BatchNormalization
-
- setUpdater(Updater) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setUpdater(Updater) - Method in class weka.dl4j.layers.DenseLayer
-
- setUpdater(Updater) - Method in class weka.dl4j.layers.OutputLayer
-
- setUpdater(Updater) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setUpper(double) - Method in class weka.dl4j.distribution.UniformDistribution
-
- setUseDropConnect(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setUseRegularization(boolean) - Method in class weka.dl4j.NeuralNetConfiguration
-
- setWeightInit(WeightInit) - Method in class weka.dl4j.layers.BatchNormalization
-
- setWeightInit(WeightInit) - Method in class weka.dl4j.layers.ConvolutionLayer
-
- setWeightInit(WeightInit) - Method in class weka.dl4j.layers.DenseLayer
-
- setWeightInit(WeightInit) - Method in class weka.dl4j.layers.OutputLayer
-
- setWeightInit(WeightInit) - Method in class weka.dl4j.layers.SubsamplingLayer
-
- setWidth(int) - Method in class weka.dl4j.iterators.ConvolutionalInstancesIterator
-
- setWidth(int) - Method in class weka.dl4j.iterators.ImageDataSetIterator
-
- ShufflingDataSetIterator - Class in weka.dl4j
-
An nd4j mini-batch iterator that shuffles the data whenever it is reset.
- ShufflingDataSetIterator(DataSet, int, int) - Constructor for class weka.dl4j.ShufflingDataSetIterator
-
Constructs a new shuffling iterator.
- SubsamplingLayer - Class in weka.dl4j.layers
-
A version of DeepLearning4j's SubsamplingLayer that implements WEKA option handling.
- SubsamplingLayer() - Constructor for class weka.dl4j.layers.SubsamplingLayer
-
Constructor for setting some defaults.