Skip navigation links
A B C D E F G H I K L M N O P Q R S T U V W 

A

AbstractIterator<T> - Class in com.clearspring.analytics.util
Rough and ready clone of the Guava AbstractIterator.
AbstractIterator() - Constructor for class com.clearspring.analytics.util.AbstractIterator
 
acceptFailure(FailureEvent) - Method in interface weka.gui.beans.FailureListener
Accept a failure event
acceptSuccess(SuccessEvent) - Method in interface weka.gui.beans.SuccessListener
Accept a success event
add(TDigest.Group) - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
add(double) - Method in class com.clearspring.analytics.stream.quantile.TDigest
Adds a sample to a histogram.
add(double, int) - Method in class com.clearspring.analytics.stream.quantile.TDigest
Adds a sample to a histogram.
add(TDigest) - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
add(double, int) - Method in class com.clearspring.analytics.stream.quantile.TDigest.Group
 
add(double) - Method in class weka.core.stats.IncrementalQuantileEstimator
Add a new observation
add(String, double) - Method in class weka.core.stats.NominalStats
Adds to the count for a given label.
add(double) - Method in class weka.core.stats.TDigest
Add a point to the estimator
add(double, int) - Method in class weka.core.stats.TDigest
Add a point to the estimator
add(Instance, double) - Method in class weka.core.WeightedReservoirSample
(Potentially) add an instance to the reservoir
addPreconstructedFilterToUse(PreconstructedFilter) - Method in class weka.distributed.WekaClassifierMapTask
Add a Preconstructed filter (such as PreConstructedPCA) to use with the classifier.
addReservoirToCurrentSketch() - Method in class weka.clusterers.CentroidSketch
Add the reservoir to the current sketch.
addToTrainingHeader(Instances) - Method in class weka.distributed.WekaClassifierMapTask
Add the supplied instances to the training header
addToTrainingHeader(Instance) - Method in class weka.distributed.WekaClassifierMapTask
Add the supplied instance to the training header
addValue(double, double) - Method in class weka.core.stats.NumericAttributeBinData
Add a value to the histogram.
aggregate(AggregateableFilteredClassifier) - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
aggregate(NumericAttributeBinData) - Method in class weka.core.stats.NumericAttributeBinData
 
aggregate(WeightedReservoirSample) - Method in class weka.core.WeightedReservoirSample
 
aggregate(int, List<double[]>, List<int[]>, Instances, boolean, boolean, boolean) - Method in class weka.distributed.CorrelationMatrixRowReduceTask
Aggregate a list of partial rows of the matrix.
aggregate(List<Instances>) - Static method in class weka.distributed.CSVToARFFHeaderReduceTask
Aggregates a list of Instances (headers) into a final Instances object.
aggregate(List<Evaluation>) - Method in class weka.distributed.WekaClassifierEvaluationReduceTask
Aggregate a list of Evaluation objects.
aggregate(List<Classifier>) - Method in class weka.distributed.WekaClassifierReduceTask
Aggregate the supplied list of classifiers
aggregate(List<Classifier>, List<Integer>, boolean) - Method in class weka.distributed.WekaClassifierReduceTask
Aggregated the supplied list of classifiers.
AggregateableEvaluationWithPriors - Class in weka.classifiers.evaluation
A version of AggregateableEvaluation that allows priors to be provided (rather than being computed from the training data).
AggregateableEvaluationWithPriors(Instances) - Constructor for class weka.classifiers.evaluation.AggregateableEvaluationWithPriors
Constructs a new AggregateableEvaluation object
AggregateableEvaluationWithPriors(Instances, CostMatrix) - Constructor for class weka.classifiers.evaluation.AggregateableEvaluationWithPriors
Constructs a new AggregateableEvaluationWithPriors object
AggregateableEvaluationWithPriors(Evaluation) - Constructor for class weka.classifiers.evaluation.AggregateableEvaluationWithPriors
Constructs a new AggregateableEvaluationWithPriors based on another Evaluation object
AggregateableFilteredClassifier - Class in weka.classifiers.meta
A FilteredClassifier that implements Aggregateable.
AggregateableFilteredClassifier() - Constructor for class weka.classifiers.meta.AggregateableFilteredClassifier
 
AggregateableFilteredClassifierUpdateable - Class in weka.classifiers.meta
An extension of AggregateableFilteredClassifier that implements UpdateableClassifier, For use with Aggregateable base classifiers that are also UpdateableClassifiers
AggregateableFilteredClassifierUpdateable() - Constructor for class weka.classifiers.meta.AggregateableFilteredClassifierUpdateable
 
aggregateHeadersAndQuartiles(List<CSVToARFFHeaderMapTask.HeaderAndQuantileDataHolder>) - Static method in class weka.distributed.CSVToARFFHeaderReduceTask
Performs aggregation over a list of header and quantile data holder objects.
aggregateReservoir(WeightedReservoirSample) - Method in class weka.clusterers.CentroidSketch
Aggregate the supplied reservoir into our reservoir.
applyFilters(Instances) - Method in class weka.distributed.KMeansMapTask
Apply the filters (if any) setup for this map task to the supplied instances
applyFilters(Instance) - Method in class weka.distributed.KMeansMapTask
Apply the filters (if any) for this map task to the supplied instance
ARFF_SUMMARY_ATTRIBUTE_PREFIX - Static variable in class weka.distributed.CSVToARFFHeaderMapTask
Attribute name prefix for a summary statistics attribute
ArffSummaryNumericMetric - Enum in weka.core.stats
An enumerated utility type for the various numeric summary metrics that are computed.
asBytes(ByteBuffer) - Method in class com.clearspring.analytics.stream.quantile.TDigest
Outputs a histogram as bytes using a particularly cheesy encoding.
asBytes(ByteBuffer) - Method in class weka.core.stats.TDigest
Encode the estimator into a byte buffer
assignStartPointsFromList(int, int, List<Instance>, Instances) - Static method in class weka.distributed.KMeansMapTask
Utility method to choose start points for a number of runs of k-means given a list of randomly selected instance objects.
asSmallBytes(ByteBuffer) - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
asSmallBytes(ByteBuffer) - Method in class weka.core.stats.TDigest
More compact encoding
attributeToStats(Attribute) - Static method in class weka.core.stats.NominalStats
Convert a summary meta attribute to a NominalStats
attributeToStats(Attribute) - Static method in class weka.core.stats.NumericStats
Convert a summary meta attribute into a NumericStats object (does not recover the internal TDigest quantile estimator)
attributeToStats(Attribute) - Static method in class weka.core.stats.StringStats
Convert a meta summary attribute containing string stats into a StringStats object

B

batchFinished() - Method in class weka.classifiers.meta.AggregateableFilteredClassifierUpdateable
 
batchFinished() - Method in class weka.classifiers.meta.FilteredClassifierUpdateable
 
batchFinished() - Method in interface weka.classifiers.UpdateableBatchProcessor
Signal that the training data is finished (for now).
batchFinished() - Method in class weka.filters.MakePreconstructedFilter
 
BatchPredictorVote - Class in weka.classifiers.meta
Class that extends Vote in order to implement BatchPredictor.
BatchPredictorVote() - Constructor for class weka.classifiers.meta.BatchPredictorVote
 
buildClassifier(Instances) - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
buildClusterer(Instances) - Method in class weka.clusterers.PreconstructedFilteredClusterer
 
buildClusterer(Instances) - Method in class weka.clusterers.PreconstructedKMeans
 
byteSize() - Method in class com.clearspring.analytics.stream.quantile.TDigest
Returns an upper bound on the number bytes that will be required to represent this histogram.
byteSize() - Method in class weka.core.stats.TDigest
Number of bytes required for the standard encoding

C

CanopyAssigner - Class in weka.distributed.clusterers
Assigns canopies to a given instance.
CanopyAssigner(Instances, String, Canopy, Filter) - Constructor for class weka.distributed.clusterers.CanopyAssigner
Construct a new CanopyAssigner
CanopyBuilder - Class in weka.distributed.clusterers
Helper class for building a distributed canopy clusterer
CanopyBuilder(Instances, Instances, CanopyMapTask, String) - Constructor for class weka.distributed.clusterers.CanopyBuilder
Construct a new Canopy builder
CanopyMapTask - Class in weka.distributed
Map task for building partial canopies
CanopyMapTask() - Constructor for class weka.distributed.CanopyMapTask
 
CanopyMapTask.ECanopy - Class in weka.distributed
Subclass of Canopy that gives us access to the distance function
CanopyReduceTask - Class in weka.distributed
Reduce task for building a canopy clusterer
CanopyReduceTask() - Constructor for class weka.distributed.CanopyReduceTask
 
cdf(double) - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
cdf(double) - Method in class weka.core.stats.TDigest
CDF
ceiling(TDigest.Group) - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
centroidCount() - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
centroids() - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
CentroidSketch - Class in weka.clusterers
Class for managing a sketch of centres for k-means, along with a weighted reservoir sample that is used over iterations to update the sketch.
CentroidSketch(Instances, NormalizableDistance, int, int) - Constructor for class weka.clusterers.CentroidSketch
Constructor.
ChartUtils - Class in weka.core
Utility routines for plotting various charts using the JFreeChart library.
ChartUtils() - Constructor for class weka.core.ChartUtils
 
checkArgument(boolean) - Static method in class com.clearspring.analytics.util.Preconditions
 
checkArgument(boolean, String, Object...) - Static method in class com.clearspring.analytics.util.Preconditions
 
checkBalance() - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
checkState(boolean, String) - Static method in class com.clearspring.analytics.util.Preconditions
 
checkState(boolean) - Static method in class com.clearspring.analytics.util.Preconditions
 
checkState(boolean, String, Object...) - Static method in class com.clearspring.analytics.util.Preconditions
 
ClassifierProducer - Interface in weka.gui.beans
Interface to something that produces a trained classifier
classifierTipText() - Method in class weka.distributed.WekaClassifierMapTask
The tool tip text for this property.
clearUserSuppliedProperties() - Method in class distributed.core.DistributedJobConfig
Clear the map of user-supplied properties
ClustererProducer - Interface in weka.gui.beans
Interface to something that produces a trained clusterer
clusterProcessedInstance(Filter, Instance, boolean, long[]) - Method in class weka.clusterers.PreconstructedKMeans
 
ClusterUtils - Class in weka.clusterers
Some static utils methods for clustering
com.clearspring.analytics.stream.quantile - package com.clearspring.analytics.stream.quantile
 
com.clearspring.analytics.util - package com.clearspring.analytics.util
 
combine(List<CSVToARFFHeaderMapTask>) - Static method in class weka.distributed.CSVToARFFHeaderMapTask
Performs a "combine" operation using the supplied partial CSVToARFFHeaderMapTask tasks.
compare(WeightedReservoirSample.InstanceHolder, WeightedReservoirSample.InstanceHolder) - Method in class weka.core.WeightedReservoirSample.InstanceHolderComparator
 
compareTo(TDigest.Group) - Method in class com.clearspring.analytics.stream.quantile.TDigest.Group
 
compress() - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
compression() - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
compression() - Method in class weka.core.stats.TDigest
Get the current compression level
compressionLevelForQuartileEstimationTipText() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the tip text for this property.
computeDerived() - Method in class weka.core.stats.NumericStats
Compute the derived statistics
computeDerived() - Method in class weka.core.stats.StringStats
Compute derived statistics - e.g.
computeDistancePrimingDataFromDistanceFunctions(List<NormalizableDistance>, Instances) - Static method in class weka.distributed.KMeansReduceTask
Utility function to examine the attribute ranges in a bunch of distance functions and return a two instance dataset with the global mins/maxes of numeric attributes set.
computeQuartilesAndHistogram() - Method in class weka.core.stats.NumericStats
Computes derived stats and computes quartiles and histogram data from our quantile estimator.
computeQuartilesAsPartOfSummaryStatsTipText() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the tip text for this property.
continueTrainingUpdateableClassifierTipText() - Method in class weka.distributed.WekaClassifierMapTask
The tool tip text for this property.
CorrelationMatrixMapTask - Class in weka.distributed
A map task that computes partial covariance sums for a covariance/correlation matrix from the data it gets via its processInstance() method.
CorrelationMatrixMapTask() - Constructor for class weka.distributed.CorrelationMatrixMapTask
 
CorrelationMatrixRowReduceTask - Class in weka.distributed
A reduce task that sums the incoming partial covariance sums for a given row of the matrix and then computes the final correlation/ covariance values.
CorrelationMatrixRowReduceTask() - Constructor for class weka.distributed.CorrelationMatrixRowReduceTask
 
count() - Method in class com.clearspring.analytics.stream.quantile.TDigest.Group
 
Count() - Constructor for class weka.core.stats.NominalStats.Count
 
covarianceTipText() - Method in class weka.distributed.CorrelationMatrixMapTask
Tool tip text for this property.
createAttributeChartNominal(Attribute, String, OutputStream, int, int) - Static method in class weka.core.ChartUtils
Creates and writes a combined chart for a nominal attribute given its summary attribute information and an output stream to write to
createAttributeChartNumeric(NumericAttributeBinData, Attribute, OutputStream, int, int) - Static method in class weka.core.ChartUtils
 
createTDigest(double) - Static method in class weka.core.stats.TDigest
Factory method.
createWeighted(double, int, Iterable<? extends Double>) - Static method in class com.clearspring.analytics.stream.quantile.TDigest.Group
 
CSVToARFFHeaderMapTask - Class in weka.distributed
A map task that processes incoming lines in CSV format and builds up header information.
CSVToARFFHeaderMapTask() - Constructor for class weka.distributed.CSVToARFFHeaderMapTask
Constructor
CSVToARFFHeaderMapTask(boolean) - Constructor for class weka.distributed.CSVToARFFHeaderMapTask
Constructor
CSVToARFFHeaderMapTask(boolean, boolean) - Constructor for class weka.distributed.CSVToARFFHeaderMapTask
Constructor
CSVToARFFHeaderMapTask.HeaderAndQuantileDataHolder - Class in weka.distributed
Container class for a Instances header with basic summary stats and a map of TDigest quantile estimators for numeric attributes
CSVToARFFHeaderMapTaskBeanInfo - Class in weka.distributed
BeanInfo class for the CSVToARFFHeaderMapTask
CSVToARFFHeaderMapTaskBeanInfo() - Constructor for class weka.distributed.CSVToARFFHeaderMapTaskBeanInfo
 
CSVToARFFHeaderReduceTask - Class in weka.distributed
Reduce task for ARFF header and summary attribute creation.
CSVToARFFHeaderReduceTask() - Constructor for class weka.distributed.CSVToARFFHeaderReduceTask
 

D

data() - Method in class com.clearspring.analytics.stream.quantile.TDigest.Group
 
dateAttributesTipText() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the tip text for this property.
dateFormatTipText() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the tip text for this property.
decode(ByteBuffer) - Static method in class com.clearspring.analytics.stream.quantile.TDigest
 
decodeCanopiesFromBase64(String) - Static method in class weka.clusterers.InstanceWithCanopyAssignments
 
decodeCanopiesNormal(String) - Static method in class weka.clusterers.InstanceWithCanopyAssignments
 
DEFAULT_VARIANCE_COVERED - Static variable in class weka.filters.unsupervised.attribute.PreConstructedPCA
Default proportion of variance covered by PCs
deleteStoredPredictions() - Method in class weka.classifiers.evaluation.AggregateableEvaluationWithPriors
Delete any buffered predictions
deSerializeAllQuantileEstimators() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Deserialize all TDigest quantile estimators in use
deSerializeCurrentQuantileEstimator() - Method in class weka.core.stats.NumericStats
Decode the current TDigest quatile estimator
DFSConverterUtils - Class in weka.core.converters
Utility routines for the HDFSSaver and HDFSLoader.
DFSConverterUtils() - Constructor for class weka.core.converters.DFSConverterUtils
 
distance(Instance, Instance) - Method in class weka.distributed.KMeansMapTask
Computes the distance between the two supplied instances
distanceToSketch(Instance) - Method in class weka.clusterers.CentroidSketch
Computes the distance between the supplied instance and the current sketch.
distributed.core - package distributed.core
 
DistributedJob - Class in distributed.core
Abstract base class for all distributed jobs.
DistributedJob.JobStatus - Enum in distributed.core
Enum of job status states
DistributedJobConfig - Class in distributed.core
Base class for different types of distributed configurations.
DistributedJobConfig() - Constructor for class distributed.core.DistributedJobConfig
 
DistributedUtils - Class in distributed.core
A few utility routines
DistributedUtils() - Constructor for class distributed.core.DistributedUtils
 
DistributedWekaException - Exception in weka.distributed
Exception class for use when errors arise in distributed applications
DistributedWekaException() - Constructor for exception weka.distributed.DistributedWekaException
Constructor
DistributedWekaException(String) - Constructor for exception weka.distributed.DistributedWekaException
Constructor with message argument
DistributedWekaException(String, Throwable) - Constructor for exception weka.distributed.DistributedWekaException
Constructor with message and cause
DistributedWekaException(Throwable) - Constructor for exception weka.distributed.DistributedWekaException
Constructor with cause argument
distributionForInstance(Instance) - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
distributionsForInstances(Instances) - Method in class weka.classifiers.meta.BatchPredictorVote
 
dontReplaceMissingValuesTipText() - Method in class weka.distributed.CanopyMapTask
Returns the tip text for this property.
dontReplaceMissingValuesTipText() - Method in class weka.distributed.KMeansMapTask
Returns the tip text for this property.

E

ECanopy() - Constructor for class weka.distributed.CanopyMapTask.ECanopy
 
enclosureCharactersTipText() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the tip text for this property.
encode(ByteBuffer, int) - Static method in class com.clearspring.analytics.stream.quantile.TDigest
 
endOfData() - Method in class com.clearspring.analytics.util.AbstractIterator
 
environmentSubstitute(String) - Method in class distributed.core.DistributedJob
Substitute environment variables in the supplied string.
environmentSubstitute(String) - Method in class weka.distributed.CanopyMapTask
Substitute environment variables in the supplied string.
evaluationResultsToInstances(Evaluation) - Static method in class weka.distributed.WekaClassifierEvaluationReduceTask
Represents basic evaluation and information retrieval results in a single instance dataset.

F

FailureEvent - Class in weka.gui.beans
Failure event for Hadoop KF steps
FailureEvent(Object, String) - Constructor for class weka.gui.beans.FailureEvent
Constructor
FailureListener - Interface in weka.gui.beans
Interface to something that is interested in receiving FailureEvents
fieldSeparatorTipText() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the tip text for this property.
FilteredClassifierUpdateable - Class in weka.classifiers.meta
Class for running an arbitrary classifier on data that has been passed through an arbitrary filter.
FilteredClassifierUpdateable() - Constructor for class weka.classifiers.meta.FilteredClassifierUpdateable
Default constructor.
filtersToUseTipText() - Method in class weka.core.StreamableFilterHelper
The tool tip text for this property.
filtersToUseTipText() - Method in class weka.distributed.KMeansMapTask
The tool tip text for this property.
filtersToUseTipText() - Method in class weka.distributed.WekaClassifierMapTask
The tool tip text for this property.
finalizeAggregation() - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
finalizeAggregation() - Method in class weka.core.stats.NumericAttributeBinData
 
finalizeAggregation() - Method in class weka.core.WeightedReservoirSample
 
finalizeBatchPrediction() - Method in class weka.distributed.WekaScoringMapTask
Finish off the last partial batch (if any).
finalizeTask() - Method in class weka.distributed.WekaClassifierEvaluationMapTask
Finalize this task.
finalizeTask() - Method in class weka.distributed.WekaClassifierMapTask
Finish up the map task.
finishedInput() - Method in class weka.distributed.clusterers.CanopyBuilder
Notify that there is no more input
first() - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
floor(TDigest.Group) - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
foldNumberTipText() - Method in class weka.distributed.WekaClassifierMapTask
The tool tip text for this property.
forceBatchLearningForUpdateableClassifiersTipText() - Method in class weka.distributed.WekaClassifierMapTask
The tool tip text for this property.
forceVotedEnsembleCreation() - Method in class weka.distributed.WekaClassifierMapTask
The tool tip text for this property.
formatNumber(double) - Static method in class weka.core.stats.StatsFormatter
 
formatNumber(double, int) - Static method in class weka.core.stats.StatsFormatter
 
formatNumberNoWidth(double, int) - Static method in class weka.core.stats.StatsFormatter
 
formatStats(Instances, boolean, int) - Static method in class weka.core.stats.StatsFormatter
Format stats contained in an Instance header that contains summary attributes
formatStats(Instances, Stats[], boolean, int) - Static method in class weka.core.stats.StatsFormatter
Format stats contained in the supplied array of Stats objects
fromBytes(ByteBuffer) - Static method in class com.clearspring.analytics.stream.quantile.TDigest
Reads a histogram from a byte buffer
fromBytes(ByteBuffer) - Static method in class weka.core.stats.TDigest
Decode a TDigest estimator from a byte buffer
fromHeader(Instances, Map<String, TDigest>) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Initialize internal state using the supplied ARFF header with summary attributes.

G

generateNames(int, int) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Generate attribute names.
generateNames(int) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Generate attribute names.
getAdditionalWekaPackageNames(DistributedJobConfig) - Method in class distributed.core.DistributedJob
Get a list of weka packages to use from the supplied config
getAggregatedCentroidSummaries() - Method in class weka.distributed.KMeansReduceTask
Get the aggregated summary data for each individual centroid.
getAttributeName() - Method in class weka.core.stats.NumericAttributeBinData
Get the name of the attribute that this histogram is for
getAxisColour() - Method in class org.tc33.jheatchart.HeatChart
Returns the colour that is set to be used for the axis bars.
getAxisLabelColour() - Method in class org.tc33.jheatchart.HeatChart
Returns the current colour of the axis labels.
getAxisLabelsFont() - Method in class org.tc33.jheatchart.HeatChart
Returns the font that describes the visual style of the labels of the axis.
getAxisThickness() - Method in class org.tc33.jheatchart.HeatChart
Returns the width of the axis bars in pixels.
getAxisValuesColour() - Method in class org.tc33.jheatchart.HeatChart
Returns the colour of the axis values as they will be painted along the axis bars.
getAxisValuesFont() - Method in class org.tc33.jheatchart.HeatChart
Returns the font which describes the visual style of the axis values.
getBackgroundColour() - Method in class org.tc33.jheatchart.HeatChart
Returns an object that represents the colour to be used as the background for the whole chart.
getBaseFilter() - Method in class weka.filters.MakePreconstructedFilter
Get the base filter being wrapped
getBatchSize() - Method in class weka.classifiers.meta.BatchPredictorVote
 
getBatchTrainedIncremental() - Method in class weka.distributed.WekaClassifierEvaluationMapTask
Get whether the classifier is an incremental one that has been batch trained
getBinFreqs() - Method in class weka.core.stats.NumericAttributeBinData
Get a list of bin frequencies for this histogram
getBinLabels() - Method in class weka.core.stats.NumericAttributeBinData
Get a list of bin labels for this histogram
getBinWidth() - Method in class weka.core.stats.NumericAttributeBinData
Get the bin width for this attribute
getCanopyAssignments() - Method in class weka.clusterers.InstanceWithCanopyAssignments
 
getCapabilities() - Method in class weka.filters.MakePreconstructedFilter
 
getCapabilities(Instances) - Method in class weka.filters.MakePreconstructedFilter
 
getCapabilities() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Returns the capabilities of this evaluator.
getCellHeight() - Method in class org.tc33.jheatchart.HeatChart
Deprecated.
As of release 0.6, replaced by HeatChart.getCellSize()
getCellSize() - Method in class org.tc33.jheatchart.HeatChart
Returns the size of each individual data cell that constitutes a value in the x,y,z space.
getCellWidth() - Method in class org.tc33.jheatchart.HeatChart
Deprecated.
As of release 0.6, replaced by HeatChart.getCellSize()
getCentroidsForRun() - Method in class weka.distributed.KMeansReduceTask
Return the centroids for the run
getCentroidStats() - Method in class weka.distributed.KMeansMapTask
Get the summary stats for each centroid
getChartHeight() - Method in class org.tc33.jheatchart.HeatChart
Deprecated.
As of release 0.6, replaced by HeatChart.getChartSize()
getChartImage(boolean) - Method in class org.tc33.jheatchart.HeatChart
Generates and returns a new chart Image configured according to this object's currently held settings.
getChartImage() - Method in class org.tc33.jheatchart.HeatChart
Generates and returns a new chart Image configured according to this object's currently held settings.
getChartMargin() - Method in class org.tc33.jheatchart.HeatChart
Returns the width of the margin in pixels to be left as empty space around the heat map element.
getChartSize() - Method in class org.tc33.jheatchart.HeatChart
Returns the size of the chart in pixels as calculated according to the cell dimensions, chart margin and other size settings.
getChartWidth() - Method in class org.tc33.jheatchart.HeatChart
Deprecated.
As of release 0.6, replaced by HeatChart.getChartSize()
getClassifier() - Method in class weka.distributed.WekaClassifierEvaluationMapTask
Get the classifier used
getClassifier() - Method in class weka.distributed.WekaClassifierMapTask
Get the classifier to use
getClassifier() - Method in interface weka.gui.beans.ClassifierProducer
Get the trained classifier
getClusterer() - Method in interface weka.gui.beans.ClustererProducer
Get the trained clusterer
getColourScale() - Method in class org.tc33.jheatchart.HeatChart
Returns the scale that is currently in use to map z-value to colour.
getCompressionLevelForQuartileEstimation() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Get the compression level to use in the TDigest quantile estimators
getComputeQuartilesAsPartOfSummaryStats() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Get whether to include estimated quartiles in the profiling stats
getContinueTrainingUpdateableClassifier() - Method in class weka.distributed.WekaClassifierMapTask
Get whether to continue training an incremental (updateable) classifier.
getConverged() - Method in class weka.distributed.KMeansMapTask
Get whether the run of k-means that this map tasks is associated with has converged
getCoOccurrenceCounts() - Method in class weka.distributed.CorrelationMatrixMapTask
The co-occurrence counts (will be null if missings are replaced by means)
getCount(String) - Method in class weka.core.stats.NominalStats
Get the count for a given label
getCovariance() - Method in class weka.distributed.CorrelationMatrixMapTask
Get whether to compute a covariance matrix rather than a correlation one
getCurrentSketch() - Method in class weka.clusterers.CentroidSketch
Get the current sketch as a set of instances
getDateAttributes() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the current attribute range to be forced to type date.
getDateFormat() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Get the format to use for parsing date values.
getDefaultValue(int) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Get the default label for a given attribute.
getDiscarded() - Method in class weka.distributed.WekaClassifierReduceTask
Get list of indices of the classifiers that were discarded (if any)
getDistanceFunction() - Method in class weka.clusterers.CentroidSketch
Get the distance function being used
getDistanceFunction() - Method in class weka.distributed.CanopyMapTask.ECanopy
 
getDistanceFunction() - Method in class weka.distributed.KMeansMapTask
Get the distance function in use
getDontReplaceMissingValues() - Method in class weka.distributed.CanopyMapTask
Gets whether missing values are to be replaced.
getDontReplaceMissingValues() - Method in class weka.distributed.KMeansMapTask
Gets whether missing values are to be replaced.
getEnclosureCharacters() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Get the character(s) to use/recognize as string enclosures
getErrorsForClusters() - Method in class weka.clusterers.PreconstructedKMeans
 
getEvaluation() - Method in class weka.distributed.WekaClassifierEvaluationMapTask
Get the evaluation object
getFailureInfo() - Method in class weka.gui.beans.FailureEvent
Get the failure reason
getFieldSeparator() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the character used as column separator.
getFilterSpec(Filter) - Static method in class weka.core.StreamableFilterHelper
Create an option specification string for a filter
getFiltersToUse() - Method in class weka.distributed.CanopyMapTask
Get the filters to wrap up with the base classifier
getFiltersToUse() - Method in class weka.distributed.KMeansMapTask
Get the user-specified filters to use with the k-means clusterer.
getFiltersToUse() - Method in class weka.distributed.WekaClassifierMapTask
Get the filters to wrap up with the base classifier
getFinalizedClusterer() - Method in class weka.distributed.CanopyMapTask
 
getFinalizedClusterer() - Method in class weka.distributed.clusterers.CanopyBuilder
Return the finalized clusterer.
getFoldNumber() - Method in class weka.distributed.WekaClassifierEvaluationMapTask
Get the fold number to evaluate on
getFoldNumber() - Method in class weka.distributed.WekaClassifierMapTask
Get the fold number to train the classifier with.
getForceBatchLearningForUpdateableClassifiers() - Method in class weka.distributed.WekaClassifierMapTask
Get whether to force batch training for incremental (Updateable) classifiers
getForceVotedEnsembleCreation() - Method in class weka.distributed.WekaClassifierMapTask
Get whether to force the creation of a Vote ensemble for Aggregateable classifiers
getGlobalDistanceFunctionPrimingData() - Method in class weka.distributed.KMeansReduceTask
Get the global distance function priming data.
getHeader() - Method in class weka.distributed.CSVToARFFHeaderMapTask
get the header information (as an Instances object) from what has been seen so far by this map task
getHeader(int, List<String>) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Get a header constructed using the supplied attribute names.
getHeader() - Method in class weka.distributed.CSVToARFFHeaderMapTask.HeaderAndQuantileDataHolder
Get the header
getHeaderAndQuantileEstimators() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Get the header information and the encoded quantile estimators
getHeatMapForMatrix(Matrix, List<String>) - Static method in class weka.core.ChartUtils
Generates a heat map from a matrix of correlations
getHeatMapForMatrix(Matrix, List<String>) - Static method in class weka.distributed.CorrelationMatrixRowReduceTask
 
getHeuristicT2(Instances) - Static method in class weka.distributed.CanopyMapTask
 
getHighValue() - Method in class org.tc33.jheatchart.HeatChart
Returns the high value.
getHighValueColour() - Method in class org.tc33.jheatchart.HeatChart
Returns the colour that is currently to be displayed for the heat map cells with the highest z-value in the dataset.
getHistogramBinLabels() - Method in class weka.core.stats.NumericStats
Get the histogram labels
getHistogramFrequencies() - Method in class weka.core.stats.NumericStats
Get the histogram bin frequencies
getIgnoreMissingValues() - Method in class weka.distributed.CorrelationMatrixMapTask
Get whether to ignore missing values
getImage() - Method in interface weka.gui.beans.ImageProducer
Get the image
getInputFormat() - Method in class weka.filters.MakePreconstructedFilter
 
getInstance() - Method in class weka.clusterers.InstanceWithCanopyAssignments
 
getInstances() - Method in interface weka.gui.beans.InstancesProducer
Get the set of instances
getIterationNumber() - Method in class weka.distributed.KMeansReduceTask
Get the current iteration number
getJobName() - Method in class distributed.core.DistributedJob
Get the job name
getJobStatus() - Method in class distributed.core.DistributedJob
Get the status of the current job
getKeepClassAttributeIfSet() - Method in class weka.distributed.CorrelationMatrixMapTask
Get whether to keep the class attribute as part of the correlation analysis
getKeepClassIfSet() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Get whether the class should be kept
getLabels() - Method in class weka.core.stats.NominalStats
Get the set of labels seen by this NominalStats
getLog() - Method in class distributed.core.DistributedJob
Get the log in use
getLowValue() - Method in class org.tc33.jheatchart.HeatChart
Returns the low value.
getLowValueColour() - Method in class org.tc33.jheatchart.HeatChart
Returns the colour that is currently to be displayed for the heat map cells with the lowest z-value in the dataset.
getMatrix() - Method in class weka.distributed.CorrelationMatrixMapTask
Returns the matrix
getMatrixIsCovariance() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Get whether the matrix is a covariance rather than correlation one
getMaximumAttributeNames() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Gets maximum number of attributes to include in transformed attribute names.
getMaximumAttributes() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Gets maximum number of PC attributes to retain.
getMaxNumCandidateCanopiesToHoldInMemory() - Method in class weka.distributed.CanopyMapTask
Get the maximum number of candidate canopies to retain in memory during training.
getMaxNumCanopies() - Method in class weka.distributed.CanopyMapTask
Get the number of clusters to find by this map task.
getMinimumCanopyDensity() - Method in class weka.distributed.CanopyMapTask
Get the minimum T2-based density below which a canopy will be pruned during periodic pruning.
getMinTrainingFraction() - Method in class weka.distributed.WekaClassifierReduceTask
Get the minimum training fraction by which a classifier is discarded.
getMissingFreq() - Method in class weka.core.stats.NumericAttributeBinData
Get the number of missing values
getMissingMismatchAttributeInfo() - Method in class weka.distributed.WekaScoringMapTask
Get a string summarizing missing and type mismatches between the incoming data and what the model expects
getMissingValue() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the current placeholder for missing values.
getMode() - Method in class weka.core.stats.NominalStats
Get the index of the mode
getModeLabel() - Method in class weka.core.stats.NominalStats
Get the most frequent label (not including missing values)
getName() - Method in class weka.core.stats.Stats
Get the name of the attribute that this Stats pertains to
getNominalAttributes() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the current attribute range to be forced to type nominal.
getNominalDefaultLabelSpecs() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Get the default label specifications for nominal attributes
getNominalLabelSpecs() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Get label specifications for nominal attributes.
getNumBins() - Method in class weka.core.stats.NumericAttributeBinData
Get the number of bins for this attribute
getNumDecimalPlaces() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Get the number of decimal places for outputting summary stats
getNumericAttributeStatsSparse(Instances, int) - Static method in class distributed.core.DistributedUtils
 
getNumMissing() - Method in class weka.core.stats.NominalStats
Get the number of missing values for this attribute
getNumTrainingInstances() - Method in class weka.distributed.WekaClassifierMapTask
Get the number of training instances actually used to train the classifier.
getOptions() - Method in class distributed.core.DistributedJobConfig
 
getOptions() - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
getOptions(PreconstructedFilter) - Static method in class weka.core.StreamableFilterHelper
Utility method to return an array of options representing the configuration of one or more filters wrapped in a PreconstructedFilter
getOptions() - Method in class weka.distributed.CanopyMapTask
 
getOptions() - Method in class weka.distributed.CorrelationMatrixMapTask
 
getOptions() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
getOptions() - Method in class weka.distributed.KMeansMapTask
 
getOptions() - Method in class weka.distributed.WekaClassifierMapTask
 
getOptions() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Gets the current settings of the filter.
getOutputFormat() - Method in class weka.filters.MakePreconstructedFilter
 
getPathToHeaderWihtSummaryAtts() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Get the path to the ARFF header (including summary attributes) used when the matrix was constructed.
getPathToMatrix() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Get the path to the correlation/covariance matrix
getPathToPreConstructedFilter() - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
getPayloadElement(String) - Method in class weka.gui.beans.FailureEvent
Get a payload element
getPayloadElement(String) - Method in class weka.gui.beans.SuccessEvent
Get a payload element
getPeriodicPruningRate() - Method in class weka.distributed.CanopyMapTask
Get the how often to prune low density canopies during training
getPreConstructedFilter() - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
Get the PreconstructedFilter to use
getPredictionLabels() - Method in class weka.distributed.WekaScoringMapTask
Get a list of labels that the model can predict
getPreprocessingFilters() - Method in class weka.distributed.KMeansMapTask
Gets the full set of preprocessing filters
getPrimingDataForDistanceFunction(Instances) - Static method in class weka.clusterers.ClusterUtils
Compute priming data for a distance function (i.e.
getPrimingDataForDistanceFunction(Instances) - Static method in class weka.distributed.CanopyReduceTask
 
getProperty(String) - Method in class distributed.core.DistributedJobConfig
Get a configuration property.
getPropertyDescriptors() - Method in class weka.distributed.CSVToARFFHeaderMapTaskBeanInfo
Get an array of PropertyDescriptors for the CSVToArffHeaderMapTask's public properties.
getPropertyDescriptors() - Method in class weka.distributed.KMeansMapTaskBeanInfo
Get an array of PropertyDescriptors for the CSVToArffHeaderMapTask's public properties.
getPropertyDescriptors() - Method in class weka.distributed.WekaClassifierMapTaskBeanInfo
Get an array of PropertyDescriptors for the CSVToArffHeaderMapTask's public properties.
getPropertyNames() - Method in class distributed.core.DistributedJobConfig
Get a list of all the properties that have values.
getQuantile() - Method in class weka.core.stats.IncrementalQuantileEstimator
Return the current estimate of the quantile
getQuantile(String, double) - Method in class weka.core.stats.QuantileCalculator
Get a specific quantile for the named attribute
getQuantileEstimator() - Method in class weka.core.stats.NumericStats
Get the quantile estimator in use (if any)
getQuantileEstimator(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask.HeaderAndQuantileDataHolder
Return a decoded TDigest quantile estimator
getQuantiles(String) - Method in class weka.core.stats.QuantileCalculator
Get the computed quantiles for the named attribute
getReservoirSample() - Method in class weka.clusterers.CentroidSketch
Get the reservoir sample
getReservoirSampleSize() - Method in class weka.distributed.WekaClassifierMapTask
Get the sample size for reservoir sampling
getRevision() - Method in class weka.classifiers.meta.FilteredClassifierUpdateable
Returns the revision string.
getRunNumber() - Method in class weka.distributed.KMeansReduceTask
Get the run number
getSample() - Method in class weka.core.WeightedReservoirSample
Get the sample
getSampleAsInstances() - Method in class weka.core.WeightedReservoirSample
Get the current sample as a set of unweighted instances
getSampleAsWeightedInstances() - Method in class weka.core.WeightedReservoirSample
Get the current sample as a set of weighted instances
getSeed() - Method in class weka.distributed.WekaClassifierMapTask
Get the seed for randomizing the data when batch learning and for reservoir sampling.
getStats() - Method in class weka.core.stats.NumericStats
Return the array of statistics
getStringAttributes() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the current attribute range to be forced to type string.
getStringLengthStats() - Method in class weka.core.stats.StringStats
Get the underlying NumericStats object that is tracking string length stats
getT1MapPhase() - Method in class weka.distributed.CanopyMapTask
Get the T1 distance.
getT2MapPhase() - Method in class weka.distributed.CanopyMapTask
Get the T2 distance to use.
getTechnicalInformation() - Method in class weka.clusterers.CentroidSketch
 
getTechnicalInformation() - Method in class weka.core.stats.IncrementalQuantileEstimator
 
getText() - Method in interface weka.gui.beans.TextProducer
Get the text
getTitle() - Method in class org.tc33.jheatchart.HeatChart
Returns the String that will be used as the title of any successive calls to generate a chart.
getTitleColour() - Method in class org.tc33.jheatchart.HeatChart
Returns the Color that represents the colour the title text should be painted in.
getTitleFont() - Method in class org.tc33.jheatchart.HeatChart
Returns the Font that describes the visual style of the title.
getTotalNumFolds() - Method in class weka.distributed.WekaClassifierEvaluationMapTask
Get the total number of folds
getTotalNumFolds() - Method in class weka.distributed.WekaClassifierMapTask
Get the total number of folds to use.
getTotalWithinClustersError() - Method in class weka.distributed.KMeansReduceTask
Get the total within cluster error for this run
getTrainingHeader() - Method in interface weka.gui.beans.ClassifierProducer
Get the header of the data used to train the classifier
getTrainingHeader() - Method in interface weka.gui.beans.ClustererProducer
Get the header of the data used to train the clusterer
getTransformedHeader() - Method in class weka.distributed.KMeansMapTask
Get the header of the data after it has been through any pre-processing filters specified by the user
getTreatUnparsableNumericValuesAsMissing() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Get whether, for hitherto thought to be numeric columns, to treat any unparsable values as missing value.
getTreatZerosAsMissing() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Get whether to treat zeros as missing values for numeric attributes when computing summary statistics.
getUseAbsValZ() - Method in class org.tc33.jheatchart.HeatChart
 
getUseReservoirSamplingWhenBatchLearning() - Method in class weka.distributed.WekaClassifierMapTask
Get whether to use reservoir sampling when batch learning
getUserSuppliedProperties() - Method in class distributed.core.DistributedJobConfig
Get the full map of user-supplied properties
getUserSuppliedProperty(String) - Method in class distributed.core.DistributedJobConfig
Get a user-supplied property
getUserSuppliedPropertyNames() - Method in class distributed.core.DistributedJobConfig
Get a list of the user-supplied property names
getVarianceCovered() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Gets the proportion of total variance to account for when retaining principal components.
getWordCountStats() - Method in class weka.core.stats.StringStats
Get the underlying NumericStats object that is tracking word count stats
getXAxisLabel() - Method in class org.tc33.jheatchart.HeatChart
Returns the String that will be displayed as a description of the x-axis in any generated charts.
getXAxisValuesFrequency() - Method in class org.tc33.jheatchart.HeatChart
Returns the frequency of the values displayed along the x-axis.
getXValues() - Method in class org.tc33.jheatchart.HeatChart
Returns the x-values which are currently set to display along the x-axis.
getYAxisLabel() - Method in class org.tc33.jheatchart.HeatChart
Returns the String that will be displayed as a description of the y-axis in any generated charts.
getYAxisValuesFrequency() - Method in class org.tc33.jheatchart.HeatChart
Returns the frequency of the values displayed along the y-axis.
getYValues() - Method in class org.tc33.jheatchart.HeatChart
Returns the y-values which are currently set to display along the y-axis.
getZValues() - Method in class org.tc33.jheatchart.HeatChart
Returns the 2-dimensional array of z-values currently in use.
globalInfo() - Method in class weka.classifiers.meta.FilteredClassifierUpdateable
Returns a string describing this classifier.
globalInfo() - Method in class weka.clusterers.CentroidSketch
Overview information for this class
globalInfo() - Method in class weka.core.stats.IncrementalQuantileEstimator
Global information about this estimator
globalInfo() - Method in class weka.filters.unsupervised.attribute.PreconstructedMissingValuesReplacer
 
globalInfo() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Returns a string describing this filter.
Group(double) - Constructor for class com.clearspring.analytics.stream.quantile.TDigest.Group
 
Group(double, int) - Constructor for class com.clearspring.analytics.stream.quantile.TDigest.Group
 
Group(double, int, boolean) - Constructor for class com.clearspring.analytics.stream.quantile.TDigest.Group
 
GroupTree - Class in com.clearspring.analytics.stream.quantile
A tree containing TDigest.Group.
GroupTree() - Constructor for class com.clearspring.analytics.stream.quantile.GroupTree
 
GroupTree(TDigest.Group) - Constructor for class com.clearspring.analytics.stream.quantile.GroupTree
 
GroupTree(GroupTree, GroupTree) - Constructor for class com.clearspring.analytics.stream.quantile.GroupTree
 

H

hashCode() - Method in class com.clearspring.analytics.stream.quantile.TDigest.Group
 
hasNext() - Method in class com.clearspring.analytics.util.AbstractIterator
 
headCount(TDigest.Group) - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
HeaderAndQuantileDataHolder(Instances, Map<String, TDigest>) - Constructor for class weka.distributed.CSVToARFFHeaderMapTask.HeaderAndQuantileDataHolder
Constructor
headerAvailableImmediately(int, List<String>, StringBuffer) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Check if the header can be produced immediately without having to do a pre-processing pass to determine and unify nominal attribute values.
headerContainsNumericAttributes(Instances) - Static method in class weka.distributed.CSVToARFFHeaderReduceTask
Returns true if the supplied header contains numeric attributes
headerContainsQuartiles(Instances) - Static method in class weka.distributed.CSVToARFFHeaderReduceTask
Returns true if the supplied header already has quartile infomration calculated and there are numeric attributes in the data
headSum(TDigest.Group) - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
HeatChart - Class in org.tc33.jheatchart
The HeatChart class describes a chart which can display 3-dimensions of values - x,y and z, where x and y are the usual 2-dimensional axis and z is portrayed by colour intensity.
HeatChart(double[][], boolean) - Constructor for class org.tc33.jheatchart.HeatChart
Constructs a heatmap for the given z-values against x/y-values that by default will be the values 0 to n-1, where n is the number of columns or rows.
HeatChart(double[][], double, double) - Constructor for class org.tc33.jheatchart.HeatChart
Constructs a heatmap for the given z-values against x/y-values that by default will be the values 0 to n-1, where n is the number of columns or rows.

I

id() - Method in class com.clearspring.analytics.stream.quantile.TDigest.Group
 
ignoreMissingValuesTipText() - Method in class weka.distributed.CorrelationMatrixMapTask
Tool tip text for this property.
ImageProducer - Interface in weka.gui.beans
Interface to something that can produce an image as output
implementsMoreEfficientBatchPrediction() - Method in class weka.classifiers.meta.BatchPredictorVote
 
IncrementalQuantileEstimator - Class in weka.core.stats
 
IncrementalQuantileEstimator() - Constructor for class weka.core.stats.IncrementalQuantileEstimator
Constructs a new estimator with quantile = 0.5 (i.e.
IncrementalQuantileEstimator(double) - Constructor for class weka.core.stats.IncrementalQuantileEstimator
Constructor
init(Instances) - Method in class weka.distributed.CanopyMapTask
 
init(Instances) - Method in class weka.distributed.KMeansMapTask
Initilizes the map task.
initParserOnly(List<String>) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Only initialize enough stuff in order to parse rows and construct instances
input(Instance) - Method in class weka.filters.MakePreconstructedFilter
 
input(Instance) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
instanceHeaderToAttributeNameList(Instances) - Static method in class weka.distributed.CSVToARFFHeaderMapTask
 
InstanceHolder(Instance, double) - Constructor for class weka.core.WeightedReservoirSample.InstanceHolder
 
InstanceHolderComparator() - Constructor for class weka.core.WeightedReservoirSample.InstanceHolderComparator
 
InstancesProducer - Interface in weka.gui.beans
Interface to something that can produce a set of instances
InstanceWithCanopyAssignments - Class in weka.clusterers
Class that encapsulates an instance with its canopy assignments
InstanceWithCanopyAssignments(Instance, long[]) - Constructor for class weka.clusterers.InstanceWithCanopyAssignments
 
isBatchPredictor() - Method in class weka.distributed.WekaScoringMapTask
Returns true if the underlying model is a BatchPredictor
isConstructed() - Method in class weka.clusterers.PreconstructedKMeans
 
isConstructed() - Method in interface weka.core.Preconstructed
Returns true if this Preconstructed instance is initialized and ready to be used
isConstructed() - Method in class weka.filters.MakePreconstructedFilter
 
isConstructed() - Method in class weka.filters.unsupervised.attribute.PreconstructedMissingValuesReplacer
 
isConstructed() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
isEmpty(String) - Static method in class distributed.core.DistributedJobConfig
Utility method that returns true if the supplied string is null or the empty string
isFirstBatchDone() - Method in class weka.filters.MakePreconstructedFilter
 
isNewBatch() - Method in class weka.filters.MakePreconstructedFilter
 
isOutputFormatDefined() - Method in class weka.filters.MakePreconstructedFilter
 
isShowXAxisValues() - Method in class org.tc33.jheatchart.HeatChart
Returns whether axis values are to be shown at all for the x-axis.
isShowYAxisValues() - Method in class org.tc33.jheatchart.HeatChart
Returns whether axis values are to be shown at all for the y-axis.
isXValuesHorizontal() - Method in class org.tc33.jheatchart.HeatChart
Returns whether the text of the values along the x-axis are to be drawn horizontally left-to-right, or vertically top-to-bottom.
isYValuesHorizontal() - Method in class org.tc33.jheatchart.HeatChart
Returns whether the text of the values along the y-axis are to be drawn horizontally left-to-right, or vertically top-to-bottom.
iterator() - Method in class com.clearspring.analytics.stream.quantile.GroupTree
Iteratres through all groups in the tree.

K

keepClassAttributeIfSetTipText() - Method in class weka.distributed.CorrelationMatrixMapTask
Tool tip text for this property.
keepClassIfSet() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Tip text for this property
KFIgnore - Annotation Type in weka.gui.beans
Marker annotation.
KMeansMapTask - Class in weka.distributed
Map task for k-means clustering.
KMeansMapTask() - Constructor for class weka.distributed.KMeansMapTask
 
KMeansMapTaskBeanInfo - Class in weka.distributed
BeanInfo class for the KMeansMapTask
KMeansMapTaskBeanInfo() - Constructor for class weka.distributed.KMeansMapTaskBeanInfo
 
KMeansReduceTask - Class in weka.distributed
Reduce task for k-means clustering.
KMeansReduceTask() - Constructor for class weka.distributed.KMeansReduceTask
 

L

last() - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
listOptions() - Method in class distributed.core.DistributedJobConfig
 
listOptions() - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
listOptions() - Static method in class weka.core.StreamableFilterHelper
Return a list of options for this utility class
listOptions() - Method in class weka.distributed.CanopyMapTask
 
listOptions() - Method in class weka.distributed.CorrelationMatrixMapTask
 
listOptions() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
listOptions() - Method in class weka.distributed.KMeansMapTask
 
listOptions() - Method in class weka.distributed.WekaClassifierMapTask
 
listOptions() - Method in class weka.filters.MakePreconstructedFilter
List the options for this filter
listOptions() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Returns an enumeration describing the available options.
Lists - Class in com.clearspring.analytics.util
Toy version of the guava class.
Lists() - Constructor for class com.clearspring.analytics.util.Lists
 
logMessage(String) - Method in class distributed.core.DistributedJob
Log a message
logMessage(Throwable) - Method in class distributed.core.DistributedJob
Log a stack trace from an exception
logMessage(String, Throwable) - Method in class distributed.core.DistributedJob
Log a message with a stack trace from an exception
LONG_SEPARATOR - Static variable in class weka.clusterers.InstanceWithCanopyAssignments
 

M

m_count - Variable in class weka.core.stats.NominalStats.Count
The value of the count
m_hT1 - Variable in class weka.distributed.CanopyMapTask
heuristic value for T1
m_hT2 - Variable in class weka.distributed.CanopyMapTask
heuristic value for T2
m_instance - Variable in class weka.core.WeightedReservoirSample.InstanceHolder
 
m_weight - Variable in class weka.core.WeightedReservoirSample.InstanceHolder
 
main(String[]) - Static method in class weka.classifiers.meta.FilteredClassifierUpdateable
Main method for running this classifier.
main(String[]) - Static method in class weka.core.ChartUtils
 
main(String[]) - Static method in class weka.core.stats.IncrementalQuantileEstimator
 
main(String[]) - Static method in class weka.core.stats.NumericAttributeBinData
 
main(String[]) - Static method in class weka.distributed.CorrelationMatrixMapTask
Main method for testing this class
main(String[]) - Static method in class weka.distributed.CSVToARFFHeaderMapTask
 
main(String[]) - Static method in class weka.distributed.CSVToARFFHeaderReduceTask
 
main(String[]) - Static method in class weka.distributed.WekaClassifierEvaluationMapTask
 
main(String[]) - Static method in class weka.distributed.WekaClassifierMapTask
 
main(String[]) - Static method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Main method for command line execution
makeAttribute() - Method in class weka.core.stats.NominalStats
 
makeAttribute() - Method in class weka.core.stats.NumericStats
 
makeAttribute() - Method in class weka.core.stats.Stats
Makes a Attribute that encapsulates the meta data
makeAttribute() - Method in class weka.core.stats.StringStats
 
makeAttributeValue(double) - Method in enum weka.core.stats.ArffSummaryNumericMetric
Makes the internal encoded version of this metric given it's value as a double
makeHeaderWithSummaryAtts(Instances, boolean) - Static method in class distributed.core.DistributedUtils
 
makeInstance(Instances, boolean, String[]) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Utility method for Constructing a dense instance given an array of parsed CSV values
makeInstance(Instances, boolean, String[], boolean) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Utility method for Constructing an instance given an array of parsed CSV values
makeInstanceFromObjectRow(Instances, boolean, Object[], boolean) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Utility method for Constructing an instance given an array of Objects
makeOptionsStr(Object) - Static method in class distributed.core.DistributedJob
Utility method to make a "help" options string for the supplied object (if it is an OptionHandler)
MakePreconstructedFilter - Class in weka.filters
Class for wrapping a standard filter and making it a PreconstructedFilter.
MakePreconstructedFilter() - Constructor for class weka.filters.MakePreconstructedFilter
 
MakePreconstructedFilter(Filter) - Constructor for class weka.filters.MakePreconstructedFilter
 
matrixIsCovarianceTipText() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Tip text for this property
max(double[][]) - Static method in class org.tc33.jheatchart.HeatChart
Finds and returns the maximum value in a 2-dimensional array of doubles.
MAX_ATTRIB_NAMES - Static variable in class weka.filters.unsupervised.attribute.PreConstructedPCA
Default number of original attribute names to include in the transformed attribute names
MAX_BINS - Static variable in class weka.core.stats.NumericAttributeBinData
Maximum bins to create
MAX_PARSING_ERRORS - Static variable in class weka.distributed.CSVToARFFHeaderMapTask
 
maximumAttributeNamesTipText() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Returns the tip text for this property.
maximumAttributesTipText() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Returns the tip text for this property.
maxNumCandidateCanopiesToHoldInMemory() - Method in class weka.distributed.CanopyMapTask
Returns the tip text for this property.
mayRemoveInstanceAfterFirstBatchDone() - Method in class weka.filters.MakePreconstructedFilter
 
mean() - Method in class com.clearspring.analytics.stream.quantile.TDigest.Group
 
merge(double, Iterable<TDigest>) - Static method in class com.clearspring.analytics.stream.quantile.TDigest
 
merge(double, Iterable<TDigest>) - Static method in class weka.core.stats.TDigest
Merge a collection of TDigest estimators into one
min(double[][], boolean) - Static method in class org.tc33.jheatchart.HeatChart
Finds and returns the minimum value in a 2-dimensional array of doubles.
minimumCanopyDensityTipText() - Method in class weka.distributed.CanopyMapTask
Returns the tip text for this property.
MISSING_LABEL - Static variable in class weka.core.stats.NominalStats
A "label" to use when storing the number of missing values
missingValueTipText() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the tip text for this property.
modelIsAClassifier() - Method in class weka.distributed.WekaScoringMapTask
Returns true if the underlying model is a classifier
modelIsUsingStringAttributes() - Method in class weka.distributed.WekaScoringMapTask
Returns true if model is using string attributes

N

newArrayList(Iterable<T>) - Static method in class com.clearspring.analytics.util.Lists
 
newArrayList() - Static method in class com.clearspring.analytics.util.Lists
 
next() - Method in class com.clearspring.analytics.util.AbstractIterator
 
nominalAttributesTipText() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the tip text for this property.
nominalDefaultLabelSpecsTipText() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the tip text for this property.
nominalLabelSpecsTipText() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the tip text for this property.
NominalStats - Class in weka.core.stats
Class for computing nominal statistics (primarily frequency counts)
NominalStats(String) - Constructor for class weka.core.stats.NominalStats
Constructs a new NominalStats
NominalStats.Count - Class in weka.core.stats
Class that encapsulates a count for nominal value
numBinsHeuristic(double, double, double, double, int) - Static method in class weka.core.stats.NumericAttributeBinData
Compute the number of bins for a histogram given summary stats
NumericAttributeBinData - Class in weka.core.stats
Class for managing bin data for a histogram based on an attribute
NumericAttributeBinData(String, Attribute, int) - Constructor for class weka.core.stats.NumericAttributeBinData
Constructor
NumericAttributeBinData(String, double, double, double, double, double, int) - Constructor for class weka.core.stats.NumericAttributeBinData
Constructor
NumericAttributeBinData(String, double, double, double, double, double, double, double, int) - Constructor for class weka.core.stats.NumericAttributeBinData
Constructor
NumericStats - Class in weka.core.stats
Class for computing numeric stats
NumericStats(String) - Constructor for class weka.core.stats.NumericStats
Constructs a new NumericStats
NumericStats(String, double) - Constructor for class weka.core.stats.NumericStats
Construct a new NumericStats
numPendingOutput() - Method in class weka.filters.MakePreconstructedFilter
 

O

objectRowToInstance(Object[], CSVToARFFHeaderMapTask, Instances, boolean, boolean) - Static method in class distributed.core.DistributedJob
Utility method to convert a row of values into an Instance
org.tc33.jheatchart - package org.tc33.jheatchart
 
output() - Method in class weka.filters.MakePreconstructedFilter
 
outputPeek() - Method in class weka.filters.MakePreconstructedFilter
 

P

parseInstance(String, CSVToARFFHeaderMapTask, Instances, boolean) - Static method in class distributed.core.DistributedJob
Utility method to parse an Instance out of a row of CSV data.
parseRowOnly(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Just parse a row.
pathToHeaderWithSummaryAttsTipText() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Tip text for this property
pathToMatrixTipText() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Tip text for this property
periodicPruningRateTipText() - Method in class weka.distributed.CanopyMapTask
Returns the tip text for this property.
postExecution() - Method in class distributed.core.DistributedJob
Perform any teardown stuff that might need to happen after execution.
Preconditions - Class in com.clearspring.analytics.util
Toy version of the guava class.
Preconditions() - Constructor for class com.clearspring.analytics.util.Preconditions
 
Preconstructed - Interface in weka.core
Marker interface for something that has been constructed/learned earlier
PreconstructedFilter - Interface in weka.filters
Marker interface for a filter that has been Preconstructed.
PreconstructedFilteredClusterer - Class in weka.clusterers
A class for using a pre-constructed clusterer (i.e.
PreconstructedFilteredClusterer() - Constructor for class weka.clusterers.PreconstructedFilteredClusterer
 
PreconstructedKMeans - Class in weka.clusterers
A "preconstructed" version of SimpleKMeans that has it's cluster centroids and cluster statistics supplied by an external client.
PreconstructedKMeans() - Constructor for class weka.clusterers.PreconstructedKMeans
 
PreconstructedMissingValuesReplacer - Class in weka.filters.unsupervised.attribute
Preconstructed filter for replacing missing values with mean/mode
PreconstructedMissingValuesReplacer(Instances) - Constructor for class weka.filters.unsupervised.attribute.PreconstructedMissingValuesReplacer
Constructor.
PreConstructedPCA - Class in weka.filters.unsupervised.attribute
Performs a principal components analysis and transformation of the data.
Dimensionality reduction is accomplished by choosing enough eigenvectors to account for some percentage of the variance in the original data -- default 0.95 (95%).
Based on code of the attribute selection scheme 'PrincipalComponents' by Mark Hall and Gabi Schmidberger.
PreConstructedPCA() - Constructor for class weka.filters.unsupervised.attribute.PreConstructedPCA
Default constructor.
PreConstructedPCA(Instances, Matrix, boolean, boolean) - Constructor for class weka.filters.unsupervised.attribute.PreConstructedPCA
Construct a new PreConstructedPCA.
PreConstructedPCA(Instances, Matrix, List<NumericStats>, boolean, boolean) - Constructor for class weka.filters.unsupervised.attribute.PreConstructedPCA
Construct a new PreConstructedPCA.
preExecution() - Method in class distributed.core.DistributedJob
Perform any setup stuff that might need to happen before commandline execution.
print(int) - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
process(Instance, boolean) - Method in class weka.clusterers.CentroidSketch
Processes an instance - basically updates the reservoir
process(Object) - Method in class weka.distributed.clusterers.CanopyAssigner
Process an instance
process(Object) - Method in class weka.distributed.clusterers.CanopyBuilder
Process the current object (instance or string).
processInstance(Instance) - Method in class weka.distributed.CorrelationMatrixMapTask
Process an instance
processInstance(Instance) - Method in class weka.distributed.KMeansMapTask
Processes a training instance.
processInstance(Instance) - Method in class weka.distributed.WekaClassifierEvaluationMapTask
Process an instance for evaluation
processInstance(Instance) - Method in class weka.distributed.WekaClassifierMapTask
Process the supplied instance.
processInstance(Instance) - Method in class weka.distributed.WekaScoringMapTask
Process (score) an instance
processInstanceBatchPredictor(Instance) - Method in class weka.distributed.WekaScoringMapTask
Process an instance.
processRow(String, List<String>) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Process a row of data coming into the map.
processRowValues(Object[], List<String>) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Process a tokenized row of values.
prunePredictions(double, long) - Method in class weka.classifiers.evaluation.AggregateableEvaluationWithPriors
Randomly downsample the predictions

Q

Q_COMPRESSION - Static variable in class weka.core.stats.NumericStats
Default compression for TDigest quantile estimators
quantile(double) - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
quantile(double) - Method in class weka.core.stats.TDigest
Quantile estimate
QuantileCalculator - Class in weka.core.stats
Class for maintaining quantile estimators for all the numeric attributes in a dataset.
QuantileCalculator(Instances, double[]) - Constructor for class weka.core.stats.QuantileCalculator
Constructor

R

recordAllData() - Method in class com.clearspring.analytics.stream.quantile.TDigest
Sets up so that all centroids will record all data assigned to them.
reduceCanopies(List<Clusterer>, Instances) - Method in class weka.distributed.CanopyReduceTask
 
reduceClusters(int, int, Instances, List<List<Instances>>) - Method in class weka.distributed.KMeansReduceTask
Reduce the cluster centroid summary metadata instances for a particular run in order to produce a new set of Instances that contains the new cluster centroids for the run.
remove(TDigest.Group) - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
remove() - Method in class com.clearspring.analytics.util.AbstractIterator
 
renderBoxPlotFromSummaryData(int, int, List<Double>, List<Double>, List<String>) - Static method in class weka.core.ChartUtils
Create a box plot buffered image from summary data (mean, median, q1, q3, min, max, minOutlier, maxOutlier, list of outliers)
renderCombinedBoxPlotAndHistogramFromSummaryData(int, int, List<String>, List<Double>, List<Double>, List<Double>, List<String>) - Static method in class weka.core.ChartUtils
Render a combined histogram and box plot chart from summary data
renderCombinedPieAndHistogramFromSummaryData(int, int, List<String>, List<Double>, List<String>) - Static method in class weka.core.ChartUtils
Render a combined histogram and pie chart from summary data
renderHistogramFromSummaryData(int, int, List<String>, List<Double>, List<String>) - Static method in class weka.core.ChartUtils
Render a histogram chart from summary data (i.e.
renderPieChartFromSummaryData(int, int, List<String>, List<Double>, boolean, boolean, List<String>) - Static method in class weka.core.ChartUtils
Render a pie chart from summary data (i.e.
reservoirSampleSizeTipText() - Method in class weka.distributed.WekaClassifierMapTask
The tool tip text for this property.
reset() - Method in class weka.core.WeightedReservoirSample
Reset (clear) the reservoir
resetPreconstructed() - Method in class weka.clusterers.PreconstructedKMeans
 
resetPreconstructed() - Method in interface weka.core.Preconstructed
Reset.
resetPreconstructed() - Method in class weka.filters.MakePreconstructedFilter
 
resetPreconstructed() - Method in class weka.filters.unsupervised.attribute.PreconstructedMissingValuesReplacer
 
resetPreconstructed() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
resetReservoir() - Method in class weka.clusterers.CentroidSketch
Clear the reservoir
run(Object, String[]) - Method in class distributed.core.DistributedJob
Execute the supplied object.
run(Object, String[]) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
runJob() - Method in class distributed.core.DistributedJob
Run the job.
runLoader(Loader, String[]) - Static method in class weka.core.converters.DFSConverterUtils
Run the supplied loader.
runSaver(Saver, String[]) - Static method in class weka.core.converters.DFSConverterUtils
Run the supplied saver.

S

saveToFile(File) - Method in class org.tc33.jheatchart.HeatChart
Generates a new chart Image based upon the currently held settings and then attempts to save that image to disk, to the location provided as a File parameter.
SCALE_EXPONENTIAL - Static variable in class org.tc33.jheatchart.HeatChart
A basic exponential scale value of 3.0.
SCALE_LINEAR - Static variable in class org.tc33.jheatchart.HeatChart
The linear scale value of 1.0.
SCALE_LOGARITHMIC - Static variable in class org.tc33.jheatchart.HeatChart
A basic logarithmic scale value of 0.3.
seedTipText() - Method in class weka.distributed.WekaClassifierMapTask
The tool tip text for this property.
SEPARATOR - Static variable in class weka.clusterers.InstanceWithCanopyAssignments
 
serializeAllQuantileEstimators() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Serialize all TDigest quantile estimators in use
serializeCurrentQuantileEstimator() - Method in class weka.core.stats.NumericStats
Serialize the current TDigest quantile estimator
setAggregationT1(double) - Method in class weka.distributed.CanopyReduceTask
 
setAggregationT2(double) - Method in class weka.distributed.CanopyReduceTask
 
setAxisColour(Color) - Method in class org.tc33.jheatchart.HeatChart
Sets the colour to be used on the axis bars.
setAxisLabelColour(Color) - Method in class org.tc33.jheatchart.HeatChart
Sets the colour of the text displayed as axis labels.
setAxisLabelsFont(Font) - Method in class org.tc33.jheatchart.HeatChart
Sets the font that describes the visual style of the axis labels.
setAxisThickness(int) - Method in class org.tc33.jheatchart.HeatChart
Sets the width of the axis bars in pixels.
setAxisValuesColour(Color) - Method in class org.tc33.jheatchart.HeatChart
Sets the colour to be used for the axis values as they will be painted along the axis bars.
setAxisValuesFont(Font) - Method in class org.tc33.jheatchart.HeatChart
Sets the font which describes the visual style of the axis values.
setBackgroundColour(Color) - Method in class org.tc33.jheatchart.HeatChart
Sets the colour to be used on the background of the chart.
setBaseFilter(Filter) - Method in class weka.filters.MakePreconstructedFilter
Set the base filter to wrap
setBatchSize(String) - Method in class weka.classifiers.meta.BatchPredictorVote
 
setBatchTrainedIncremental(boolean) - Method in class weka.distributed.WekaClassifierEvaluationMapTask
Set whether the classifier is an incremental one that has been batch trained
setCellHeight(int) - Method in class org.tc33.jheatchart.HeatChart
Deprecated.
As of release 0.6, replaced by HeatChart.setCellSize(Dimension)
setCellSize(Dimension) - Method in class org.tc33.jheatchart.HeatChart
Sets the size of each individual cell that constitutes a value in x,y,z data space.
setCellWidth(int) - Method in class org.tc33.jheatchart.HeatChart
Deprecated.
As of release 0.6, replaced by HeatChart.setCellSize(Dimension)
setCentroids(Instances) - Method in class weka.distributed.KMeansMapTask
Set the cluster centroids to use for this iteration.
setChartMargin(int) - Method in class org.tc33.jheatchart.HeatChart
Sets the width of the margin in pixels to be left as empty space around the heat map element.
setClassifier(Classifier) - Method in class weka.classifiers.meta.AggregateableFilteredClassifierUpdateable
 
setClassifier(Classifier) - Method in class weka.classifiers.meta.FilteredClassifierUpdateable
Set the base learner.
setClassifier(Classifier) - Method in class weka.distributed.WekaClassifierEvaluationMapTask
Set the classifier to use
setClassifier(Classifier) - Method in class weka.distributed.WekaClassifierMapTask
Set the classifier to use
setClusterCentroids(Instances) - Method in class weka.clusterers.PreconstructedKMeans
 
setClusterStats(List<Instances>) - Method in class weka.clusterers.PreconstructedKMeans
 
setColourScale(double) - Method in class org.tc33.jheatchart.HeatChart
Sets the scale that is currently in use to map z-value to colour.
setCompression(double) - Method in class weka.core.stats.NumericStats
Set the compression level
setCompressionLevelForQuartileEstimation(double) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Set the compression level to use in the TDigest quantile estimators
setComputeQuartilesAsPartOfSummaryStats(boolean) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Set whether to include estimated quartiles in the profiling stats
setConstructed() - Method in class weka.filters.MakePreconstructedFilter
Mark this pre-constructed filter as "constructed" - i.e.
setContinueTrainingUpdateableClassifier(boolean) - Method in class weka.distributed.WekaClassifierMapTask
Set whether to continue training an incremental (updateable) classifier.
setConverged(boolean) - Method in class weka.distributed.KMeansMapTask
Set whether the run of k-means that this map is associated with has converged or not
setCovariance(boolean) - Method in class weka.distributed.CorrelationMatrixMapTask
Set whether to compute a covariance matrix rather than a correlation one
setDateAttributes(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Set the attribute range to be forced to type date.
setDateFormat(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Set the format to use for parsing date values.
setDistanceFunction(NormalizableDistance) - Method in class weka.clusterers.CentroidSketch
Set the distance function to use
setDontReplaceMissingValues(boolean) - Method in class weka.distributed.CanopyMapTask
Sets whether missing values are to be replaced.
setDontReplaceMissingValues(boolean) - Method in class weka.distributed.KMeansMapTask
Sets whether missing values are to be replaced.
setDummyDistancePrimingData(Instances) - Method in class weka.distributed.KMeansMapTask
Set the dummy priming data (two-instance dataset that contains global min/max for numeric attributes) for the distance function to use when normalizing numeric attributes.
setEnclosureCharacters(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Set the character(s) to use/recognize as string enclosures
setEnvironment(Environment) - Method in class distributed.core.DistributedJob
 
setEnvironment(Environment) - Method in class weka.distributed.CanopyMapTask
 
setEnvironment(Environment) - Method in class weka.distributed.WekaClassifierMapTask
 
setFieldSeparator(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Sets the character used as column separator.
setFilter(Filter) - Method in class weka.clusterers.PreconstructedFilteredClusterer
 
setFilteredHeader(Instances) - Method in class weka.clusterers.PreconstructedFilteredClusterer
Set the header for the filtered data.
setFiltersToUse(Filter[]) - Method in class weka.distributed.CanopyMapTask
Set the filters to wrap up with the base classifier
setFiltersToUse(Filter[]) - Method in class weka.distributed.KMeansMapTask
Set the user-specified filters to use with the k-means clusterer.
setFiltersToUse(Filter[]) - Method in class weka.distributed.WekaClassifierMapTask
Set the filters to wrap up with the base classifier
setFinalNumberOfIterations(int) - Method in class weka.clusterers.PreconstructedKMeans
 
setFoldNumber(int) - Method in class weka.distributed.WekaClassifierEvaluationMapTask
Set the fold number to evaluate on.
setFoldNumber(int) - Method in class weka.distributed.WekaClassifierMapTask
Set the fold number to train the classifier with.
setForceBatchLearningForUpdateableClassifiers(boolean) - Method in class weka.distributed.WekaClassifierMapTask
Set whether to force batch training for incremental (Updateable) classifiers
setForceVotedEnsembleCreation(boolean) - Method in class weka.distributed.WekaClassifierMapTask
Set whether to force the creation of a Vote ensemble for Aggregateable classifiers
setHighValueColour(Color) - Method in class org.tc33.jheatchart.HeatChart
Sets the colour to be used to fill cells of the heat map with the highest z-values in the dataset.
setHistogramData(List<String>, List<Double>) - Method in class weka.core.stats.NumericStats
Set histogram data for this numeric stats
setHistogramMap(Map<Integer, NumericAttributeBinData>) - Method in class weka.core.stats.QuantileCalculator
Set a map of initialized numeric histogram data to be updated for each incoming row/instance
setIgnoreMissingValues(boolean) - Method in class weka.distributed.CorrelationMatrixMapTask
Set whether to ignore missing values
setInitialStartingPoints(Instances) - Method in class weka.clusterers.PreconstructedKMeans
 
setInputFormat(Instances) - Method in class weka.filters.MakePreconstructedFilter
 
setInputFormat(Instances) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Sets the format of the input instances.
setJobDescription(String) - Method in class distributed.core.DistributedJob
Set the job description
setJobName(String) - Method in class distributed.core.DistributedJob
Set the job name
setJobStatus(DistributedJob.JobStatus) - Method in class distributed.core.DistributedJob
Set the status of the current job
setKeepClassAttributeIfSet(boolean) - Method in class weka.distributed.CorrelationMatrixMapTask
Set whether to keep the class attribute as part of the correlation analysis
setKeepClassIfSet(boolean) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Set whether the class should be kept
setLog(Logger) - Method in class distributed.core.DistributedJob
Set the log to use
setLowValueColour(Color) - Method in class org.tc33.jheatchart.HeatChart
Sets the colour to be used to fill cells of the heat map with the lowest z-values in the dataset.
setMatrixIsCovariance(boolean) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Set whether the matrix is a covariance rather than correlation one
setMaxFinalNumCanopies(int) - Method in class weka.distributed.CanopyReduceTask
 
setMaximumAttributeNames(int) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Sets maximum number of attributes to include in transformed attribute names.
setMaximumAttributes(int) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Sets maximum number of PC attributes to retain.
setMaxNumCandidateCanopiesToHoldInMemory(String) - Method in class weka.distributed.CanopyMapTask
Set the maximum number of candidate canopies to retain in memory during training.
setMaxNumCanopies(String) - Method in class weka.distributed.CanopyMapTask
Set the maximum number of clusters to find in this map task.
setMinimumCanopyDensity(String) - Method in class weka.distributed.CanopyMapTask
Set the minimum T2-based density below which a canopy will be pruned during periodic pruning.
setMinTrainingFraction(double) - Method in class weka.distributed.WekaClassifierReduceTask
Set the minimum training fraction by which a classifier is discarded.
setMissingValue(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Sets the placeholder for missing values.
setModel(Object, Instances, Instances) - Method in class weka.distributed.WekaScoringMapTask
Set the model to use
setNominalAttributes(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Sets the attribute range to be forced to type nominal.
setNominalDefaultLabelSpecs(Object[]) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Set the default label specifications for nominal attributes
setNominalLabelSpecs(Object[]) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Set label specifications for nominal attributes.
setNumDecimalPlaces(int) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Set the number of decimal places for outputting summary stats
setNumMissing(double) - Method in class weka.core.stats.NominalStats
Set the number of missing values for this attribute
setOptions(String[]) - Method in class distributed.core.DistributedJobConfig
 
setOptions(String[]) - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
setOptions(String[]) - Method in class weka.distributed.CanopyMapTask
 
setOptions(String[]) - Method in class weka.distributed.CorrelationMatrixMapTask
 
setOptions(String[]) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
setOptions(String[]) - Method in class weka.distributed.KMeansMapTask
 
setOptions(String[]) - Method in class weka.distributed.WekaClassifierMapTask
 
setOptions(String[]) - Method in class weka.filters.MakePreconstructedFilter
Set the options for this filter
setOptions(String[]) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Parses a list of options for this object.
setPathToHeaderWithSummaryAtts(String) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Set the path to the ARFF header (including summary attributes) used when the matrix was constructed.
setPathToMatrix(String) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Set the path to the correlation/covariance matrix
setPathToPreConstructedFilter(String) - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
setPayloadElement(String, T) - Method in class weka.gui.beans.FailureEvent
Set a payload element
setPayloadElement(String, T) - Method in class weka.gui.beans.SuccessEvent
Set a payload element
setPeriodicPruningRate(String) - Method in class weka.distributed.CanopyMapTask
Set the how often to prune low density canopies during training
setPreConstructedFilter(Filter) - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
Set the PreconstructedFilter to use
setPriors(double[], double) - Method in class weka.classifiers.evaluation.AggregateableEvaluationWithPriors
Set the priors to use.
setProperty(String, String) - Method in class distributed.core.DistributedJobConfig
Set a configuration property
setQuantileEstimator(TDigest) - Method in class weka.core.stats.NumericStats
Set the quantile estimator to use
setReservoirSampleSize(int) - Method in class weka.distributed.WekaClassifierMapTask
Set the sample size for reservoir sampling
setSeed(String) - Method in class weka.distributed.WekaClassifierMapTask
Set the seed for randomizing the data when batch learning and for reservoir sampling.
setShowXAxisValues(boolean) - Method in class org.tc33.jheatchart.HeatChart
Sets whether axis values are to be shown at all for the x-axis.
setShowYAxisValues(boolean) - Method in class org.tc33.jheatchart.HeatChart
Sets whether axis values are to be shown at all for the y-axis.
setStats(double[]) - Method in class weka.core.stats.NumericStats
Sets the array of statistics.
setStatusMessagePrefix(String) - Method in class distributed.core.DistributedJob
Set the prefix to use for log status messages (primarily for use in the Knowledge Flow's status area)
setStringAttributes(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Sets the attribute range to be forced to type string.
setT1MapPhase(String) - Method in class weka.distributed.CanopyMapTask
Set the T1 distance.
setT2MapPhase(String) - Method in class weka.distributed.CanopyMapTask
Set the T2 distance to use.
setTitle(String) - Method in class org.tc33.jheatchart.HeatChart
Sets the String that will be used as the title of any successive calls to generate a chart.
setTitleColour(Color) - Method in class org.tc33.jheatchart.HeatChart
Sets the Color that describes the colour to be used for the chart title String.
setTitleFont(Font) - Method in class org.tc33.jheatchart.HeatChart
Sets a new Font to be used in rendering the chart's title String.
setTotalNumFolds(int) - Method in class weka.distributed.WekaClassifierEvaluationMapTask
Set the total number of folds (1 for evaluating on all the data)
setTotalNumFolds(int) - Method in class weka.distributed.WekaClassifierMapTask
Set the total number of folds to use.
setTreatUnparsableNumericValuesAsMissing(boolean) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Set whether, for hitherto thought to be numeric columns, to treat any unparsable values as missing value.
setTreatZerosAsMissing(boolean) - Method in class weka.distributed.CSVToARFFHeaderMapTask
Set whether to treat zeros as missing values for numeric attributes when computing summary statistics.
setup(Instances) - Method in class weka.distributed.CorrelationMatrixMapTask
Initialize the map task
setup(Instances, double[], double, long, double) - Method in class weka.distributed.WekaClassifierEvaluationMapTask
Setup the task.
setup(Instances) - Method in class weka.distributed.WekaClassifierMapTask
Initialize the map task
setUseAbsValZ(boolean) - Method in class org.tc33.jheatchart.HeatChart
 
setUseReservoirSamplingWhenBatchLearning(boolean) - Method in class weka.distributed.WekaClassifierMapTask
Set whether to use reservoir sampling when batch learning
setUserSuppliedProperty(String, String) - Method in class distributed.core.DistributedJobConfig
Set a user-supplied property
setVarianceCovered(double) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Sets the amount of variance to account for when retaining principal components.
setWithinClustersSumOfErrors(double[]) - Method in class weka.clusterers.PreconstructedKMeans
 
setXAxisLabel(String) - Method in class org.tc33.jheatchart.HeatChart
Sets the String that will be displayed as a description of the x-axis in any generated charts.
setXAxisValuesFrequency(int) - Method in class org.tc33.jheatchart.HeatChart
Sets the frequency of the values displayed along the x-axis.
setXValues(double, double) - Method in class org.tc33.jheatchart.HeatChart
Sets the x-values which are plotted along the x-axis.
setXValues(Object[]) - Method in class org.tc33.jheatchart.HeatChart
Sets the x-values which are plotted along the x-axis.
setXValuesHorizontal(boolean) - Method in class org.tc33.jheatchart.HeatChart
Sets whether the text of the values along the x-axis should be drawn horizontally left-to-right, or vertically top-to-bottom.
setYAxisLabel(String) - Method in class org.tc33.jheatchart.HeatChart
Sets the String that will be displayed as a description of the y-axis in any generated charts.
setYAxisValuesFrequency(int) - Method in class org.tc33.jheatchart.HeatChart
Sets the frequency of the values displayed along the y-axis.
setYValues(double, double) - Method in class org.tc33.jheatchart.HeatChart
Sets the y-values which are plotted along the y-axis.
setYValues(Object[]) - Method in class org.tc33.jheatchart.HeatChart
Sets the y-values which are plotted along the y-axis.
setYValuesHorizontal(boolean) - Method in class org.tc33.jheatchart.HeatChart
Sets whether the text of the values along the y-axis should be drawn horizontally left-to-right, or vertically top-to-bottom.
setZValues(double[][]) - Method in class org.tc33.jheatchart.HeatChart
Replaces the z-values array.
setZValues(double[][], double, double) - Method in class org.tc33.jheatchart.HeatChart
Replaces the z-values array.
size() - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
size() - Method in class com.clearspring.analytics.stream.quantile.TDigest
Returns the number of samples represented in this histogram.
SMALL_ENCODING - Static variable in class com.clearspring.analytics.stream.quantile.TDigest
 
smallByteSize() - Method in class com.clearspring.analytics.stream.quantile.TDigest
Returns an upper bound on the number of bytes that will be required to represent this histogram in the tighter representation.
smallByteSize() - Method in class weka.core.stats.TDigest
Number of bytes required for the compact encoding
splitInstanceAndEncodedCanopies(String) - Static method in class weka.clusterers.InstanceWithCanopyAssignments
 
stackTraceToString(Throwable) - Static method in class distributed.core.DistributedJob
Convert a stack trace from a Throwable to a string
Stats - Class in weka.core.stats
Stats base class for the numeric and nominal summary meta data
Stats(String) - Constructor for class weka.core.stats.Stats
Construct a new Stats
StatsFormatter - Class in weka.core.stats
Class for formatting summary stats into nice readable output
StatsFormatter() - Constructor for class weka.core.stats.StatsFormatter
 
statusMessage(String) - Method in class distributed.core.DistributedJob
Send a message to the status
stopJob() - Method in class distributed.core.DistributedJob
Signal that the job should abort (if it is currently running)
StreamableFilterHelper - Class in weka.core
Utility class for wrapping one or more StreamableFilters in a MakePreconstructedFilter
StreamableFilterHelper() - Constructor for class weka.core.StreamableFilterHelper
 
stringAttributesTipText() - Method in class weka.distributed.CSVToARFFHeaderMapTask
Returns the tip text for this property.
StringStats - Class in weka.core.stats
Class for computing string-related stats.
StringStats(String) - Constructor for class weka.core.stats.StringStats
Constructs a new StringStats
stripSummaryAtts(Instances) - Static method in class weka.distributed.CSVToARFFHeaderReduceTask
Utility method that returns a header Instances object without any summary attributes.
SuccessEvent - Class in weka.gui.beans
Success event for Hadoop KF steps
SuccessEvent(Object) - Constructor for class weka.gui.beans.SuccessEvent
Constructor
SuccessListener - Interface in weka.gui.beans
Interface to something that is interested in receiving SuccessEvents
sum() - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 

T

t1MapPhaseTipText() - Method in class weka.distributed.CanopyMapTask
Tip text for this property
t2MapPhaseTipText() - Method in class weka.distributed.CanopyMapTask
Tip text for this property
tailSet(TDigest.Group) - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
TDigest - Class in com.clearspring.analytics.stream.quantile
Adaptive histogram based on something like streaming k-means crossed with Q-digest.
TDigest(double) - Constructor for class com.clearspring.analytics.stream.quantile.TDigest
A histogram structure that will record a sketch of a distribution.
TDigest(double, Random) - Constructor for class com.clearspring.analytics.stream.quantile.TDigest
 
TDigest - Class in weka.core.stats
Wrapper for TDigest quantile estimators.
TDigest() - Constructor for class weka.core.stats.TDigest
 
TDigest.Group - Class in com.clearspring.analytics.stream.quantile
 
test(String[]) - Static method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Method for testing this class
TextProducer - Interface in weka.gui.beans
Interface to something that can produce some sort of textual result/output
toString() - Method in class com.clearspring.analytics.stream.quantile.TDigest.Group
 
toString() - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
toString() - Method in class weka.classifiers.meta.AggregateableFilteredClassifierUpdateable
 
toString() - Method in class weka.clusterers.InstanceWithCanopyAssignments
 
toString() - Method in enum weka.core.stats.ArffSummaryNumericMetric
 
toString() - Method in class weka.core.stats.NumericAttributeBinData
 
toString() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
toStringBase64() - Method in class weka.clusterers.InstanceWithCanopyAssignments
 
TOTAL_NUMBER_OF_MAPS - Static variable in class weka.distributed.WekaClassifierMapTask
If this property is set then we can adjust the total number of requested iterations for IteratedSingleClassifierEnhancers according to the number of maps that are going to run.
totalNumberOfFoldsTipText() - Method in class weka.distributed.WekaClassifierMapTask
The tool tip text for this property.
toValue(String, String) - Method in enum weka.core.stats.ArffSummaryNumericMetric
Extracts the value of the metric from the string representation

U

update(double, double, boolean, boolean) - Method in class weka.core.stats.NumericStats
Update the incremental aggregateable portions of this NumericStats with the supplied value
update(String[], String) - Method in class weka.core.stats.QuantileCalculator
Perform an update using an instance represented as an array of string values
update(Instance) - Method in class weka.core.stats.QuantileCalculator
Perform an update using the supplied instance
update(String, double) - Method in class weka.core.stats.StringStats
Update with a new value
update(Instance) - Method in class weka.distributed.CanopyMapTask
 
UpdateableBatchProcessor - Interface in weka.classifiers
Updateable classifiers can implement this if they wish to be informed at the end of the training stream.
updateClassifier(Instance) - Method in class weka.classifiers.meta.AggregateableFilteredClassifierUpdateable
 
updateClassifier(Instance) - Method in class weka.classifiers.meta.FilteredClassifierUpdateable
Updates a classifier using the given instance.
updateFinished() - Method in class weka.distributed.CanopyMapTask
 
updateModel(Object) - Method in class weka.distributed.WekaScoringMapTask
Update the underlying model for this scoring task
updateSummaryAttsWithQuartilesAndHistograms(Instances, QuantileCalculator, Map<Integer, NumericAttributeBinData>) - Static method in class weka.distributed.CSVToARFFHeaderReduceTask
Updates a header that contains summary attributes with quartiles and histogram data.
updateSummaryStats(Map<String, Stats>, Map<String, StringStats>, String, double, String, boolean, boolean, boolean, boolean, double) - Static method in class weka.distributed.CSVToARFFHeaderMapTask
Update the summary statistics for a given attribute with the given value
useReservoirSamplingWhenBatchLearningTipText() - Method in class weka.distributed.WekaClassifierMapTask
The tool tip text for this property.

V

valueFromAttribute(Attribute) - Method in enum weka.core.stats.ArffSummaryNumericMetric
Extracts the value of this particular metric from the summary Attribute
valueOf(String) - Static method in enum distributed.core.DistributedJob.JobStatus
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.core.stats.ArffSummaryNumericMetric
Returns the enum constant of this type with the specified name.
values() - Static method in enum distributed.core.DistributedJob.JobStatus
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.core.stats.ArffSummaryNumericMetric
Returns an array containing the constants of this enum type, in the order they are declared.
varianceCoveredTipText() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
Returns the tip text for this property.
VERBOSE_ENCODING - Static variable in class com.clearspring.analytics.stream.quantile.TDigest
 

W

WeightedReservoirSample - Class in weka.core
Class implementing weighted reservoir sampling.
WeightedReservoirSample(int, int) - Constructor for class weka.core.WeightedReservoirSample
Constructor
WeightedReservoirSample.InstanceHolder - Class in weka.core
Small inner class to hold an instance an its weight.
WeightedReservoirSample.InstanceHolderComparator - Class in weka.core
Comparator for InstanceHolder
weightSketchesAndClusterToFinalStartPoints(int, int, CentroidSketch[], KMeansReduceTask[], boolean) - Static method in class weka.clusterers.ClusterUtils
Utility method to perform the last phase of the k-means|| initialization - i.e.
weka.classifiers - package weka.classifiers
 
weka.classifiers.evaluation - package weka.classifiers.evaluation
 
weka.classifiers.meta - package weka.classifiers.meta
 
weka.clusterers - package weka.clusterers
 
weka.core - package weka.core
 
weka.core.converters - package weka.core.converters
 
weka.core.stats - package weka.core.stats
 
weka.distributed - package weka.distributed
 
weka.distributed.clusterers - package weka.distributed.clusterers
 
weka.filters - package weka.filters
 
weka.filters.unsupervised.attribute - package weka.filters.unsupervised.attribute
 
weka.gui.beans - package weka.gui.beans
 
WEKA_ADDITIONAL_PACKAGES_KEY - Static variable in class distributed.core.DistributedJob
Property key for specifying weka packages to use in the job
WekaClassifierEvaluationMapTask - Class in weka.distributed
Map task for evaluating a trained classifier.
WekaClassifierEvaluationMapTask() - Constructor for class weka.distributed.WekaClassifierEvaluationMapTask
 
WekaClassifierEvaluationReduceTask - Class in weka.distributed
Reduce task for aggregating Evaluation objects
WekaClassifierEvaluationReduceTask() - Constructor for class weka.distributed.WekaClassifierEvaluationReduceTask
 
WekaClassifierMapTask - Class in weka.distributed
A map task for building classifiers.
WekaClassifierMapTask() - Constructor for class weka.distributed.WekaClassifierMapTask
 
WekaClassifierMapTaskBeanInfo - Class in weka.distributed
BeanInfo class for the WekaClassifierMapTask
WekaClassifierMapTaskBeanInfo() - Constructor for class weka.distributed.WekaClassifierMapTaskBeanInfo
 
WekaClassifierReduceTask - Class in weka.distributed
Reduce task for aggregating classifiers into one final model, if they all directly implement Aggregateable, or into a voted ensemble otherwise
WekaClassifierReduceTask() - Constructor for class weka.distributed.WekaClassifierReduceTask
 
WekaScoringMapTask - Class in weka.distributed
Map task for scoring data using a model that has been previously learned.
WekaScoringMapTask() - Constructor for class weka.distributed.WekaScoringMapTask
 
wrapStreamableFilters(List<StreamableFilter>) - Static method in class weka.core.StreamableFilterHelper
Wraps a list of filters into a Preconstructed filter
wrapStreamableFilters(String[]) - Static method in class weka.core.StreamableFilterHelper
Wraps specified filters into a Preconstructed filter
writeHeatMapImage(Image, OutputStream) - Static method in class weka.distributed.CorrelationMatrixRowReduceTask
 
writeImage(BufferedImage, OutputStream) - Static method in class weka.core.ChartUtils
Write a BufferedImage to a destination output stream as a png
A B C D E F G H I K L M N O P Q R S T U V W 
Skip navigation links