- AbstractIterator<T> - Class in com.clearspring.analytics.util
 
- 
Rough and ready clone of the Guava AbstractIterator.
 
- AbstractIterator() - Constructor for class com.clearspring.analytics.util.AbstractIterator
 
-  
 
- acceptFailure(FailureEvent) - Method in interface weka.gui.beans.FailureListener
 
- 
Accept a failure event
 
- acceptSuccess(SuccessEvent) - Method in interface weka.gui.beans.SuccessListener
 
- 
Accept a success event
 
- add(TDigest.Group) - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
-  
 
- add(double) - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
- 
Adds a sample to a histogram.
 
- add(double, int) - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
- 
Adds a sample to a histogram.
 
- add(TDigest) - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
-  
 
- add(double, int) - Method in class com.clearspring.analytics.stream.quantile.TDigest.Group
 
-  
 
- add(double) - Method in class weka.core.stats.IncrementalQuantileEstimator
 
- 
Add a new observation
 
- add(String, double) - Method in class weka.core.stats.NominalStats
 
- 
Adds to the count for a given label.
 
- add(double) - Method in class weka.core.stats.TDigest
 
- 
Add a point to the estimator
 
- add(double, int) - Method in class weka.core.stats.TDigest
 
- 
Add a point to the estimator
 
- add(Instance, double) - Method in class weka.core.WeightedReservoirSample
 
- 
(Potentially) add an instance to the reservoir
 
- addPreconstructedFilterToUse(PreconstructedFilter) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Add a Preconstructed filter (such as PreConstructedPCA) to use with the
 classifier.
 
- addReservoirToCurrentSketch() - Method in class weka.clusterers.CentroidSketch
 
- 
Add the reservoir to the current sketch.
 
- addToTrainingHeader(Instances) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Add the supplied instances to the training header
 
- addToTrainingHeader(Instance) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Add the supplied instance to the training header
 
- addValue(double, double) - Method in class weka.core.stats.NumericAttributeBinData
 
- 
Add a value to the histogram.
 
- aggregate(AggregateableFilteredClassifier) - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
-  
 
- aggregate(NumericAttributeBinData) - Method in class weka.core.stats.NumericAttributeBinData
 
-  
 
- aggregate(WeightedReservoirSample) - Method in class weka.core.WeightedReservoirSample
 
-  
 
- aggregate(int, List<double[]>, List<int[]>, Instances, boolean, boolean, boolean) - Method in class weka.distributed.CorrelationMatrixRowReduceTask
 
- 
Aggregate a list of partial rows of the matrix.
 
- aggregate(List<Instances>) - Static method in class weka.distributed.CSVToARFFHeaderReduceTask
 
- 
Aggregates a list of Instances (headers) into a final Instances object.
 
- aggregate(List<Evaluation>) - Method in class weka.distributed.WekaClassifierEvaluationReduceTask
 
- 
Aggregate a list of Evaluation objects.
 
- aggregate(List<Classifier>) - Method in class weka.distributed.WekaClassifierReduceTask
 
- 
Aggregate the supplied list of classifiers
 
- aggregate(List<Classifier>, List<Integer>, boolean) - Method in class weka.distributed.WekaClassifierReduceTask
 
- 
Aggregated the supplied list of classifiers.
 
- AggregateableEvaluationWithPriors - Class in weka.classifiers.evaluation
 
- 
A version of AggregateableEvaluation that allows priors to be provided
 (rather than being computed from the training data).
 
- AggregateableEvaluationWithPriors(Instances) - Constructor for class weka.classifiers.evaluation.AggregateableEvaluationWithPriors
 
- 
Constructs a new AggregateableEvaluation object
 
- AggregateableEvaluationWithPriors(Instances, CostMatrix) - Constructor for class weka.classifiers.evaluation.AggregateableEvaluationWithPriors
 
- 
Constructs a new AggregateableEvaluationWithPriors object
 
- AggregateableEvaluationWithPriors(Evaluation) - Constructor for class weka.classifiers.evaluation.AggregateableEvaluationWithPriors
 
- 
Constructs a new AggregateableEvaluationWithPriors based on another
 Evaluation object
 
- AggregateableFilteredClassifier - Class in weka.classifiers.meta
 
- 
A FilteredClassifier that implements Aggregateable.
 
- AggregateableFilteredClassifier() - Constructor for class weka.classifiers.meta.AggregateableFilteredClassifier
 
-  
 
- AggregateableFilteredClassifierUpdateable - Class in weka.classifiers.meta
 
- 
An extension of AggregateableFilteredClassifier that implements
 UpdateableClassifier, For use with Aggregateable base classifiers that are
 also UpdateableClassifiers
 
- AggregateableFilteredClassifierUpdateable() - Constructor for class weka.classifiers.meta.AggregateableFilteredClassifierUpdateable
 
-  
 
- aggregateHeadersAndQuartiles(List<CSVToARFFHeaderMapTask.HeaderAndQuantileDataHolder>) - Static method in class weka.distributed.CSVToARFFHeaderReduceTask
 
- 
Performs aggregation over a list of header and quantile data holder
 objects.
 
- aggregateReservoir(WeightedReservoirSample) - Method in class weka.clusterers.CentroidSketch
 
- 
Aggregate the supplied reservoir into our reservoir.
 
- applyFilters(Instances) - Method in class weka.distributed.KMeansMapTask
 
- 
Apply the filters (if any) setup for this map task to the supplied
 instances
 
- applyFilters(Instance) - Method in class weka.distributed.KMeansMapTask
 
- 
Apply the filters (if any) for this map task to the supplied instance
 
- ARFF_SUMMARY_ATTRIBUTE_PREFIX - Static variable in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Attribute name prefix for a summary statistics attribute
 
- ArffSummaryNumericMetric - Enum in weka.core.stats
 
- 
An enumerated utility type for the various numeric summary metrics that are
 computed.
 
- asBytes(ByteBuffer) - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
- 
Outputs a histogram as bytes using a particularly cheesy encoding.
 
- asBytes(ByteBuffer) - Method in class weka.core.stats.TDigest
 
- 
Encode the estimator into a byte buffer
 
- assignStartPointsFromList(int, int, List<Instance>, Instances) - Static method in class weka.distributed.KMeansMapTask
 
- 
Utility method to choose start points for a number of runs of k-means given
 a list of randomly selected instance objects.
 
- asSmallBytes(ByteBuffer) - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
-  
 
- asSmallBytes(ByteBuffer) - Method in class weka.core.stats.TDigest
 
- 
More compact encoding
 
- attributeToStats(Attribute) - Static method in class weka.core.stats.NominalStats
 
- 
Convert a summary meta attribute to a NominalStats
 
- attributeToStats(Attribute) - Static method in class weka.core.stats.NumericStats
 
- 
Convert a summary meta attribute into a NumericStats object (does not
 recover the internal TDigest quantile estimator)
 
- attributeToStats(Attribute) - Static method in class weka.core.stats.StringStats
 
- 
Convert a meta summary attribute containing string stats into a StringStats
 object
 
- generateNames(int, int) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Generate attribute names.
 
- generateNames(int) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Generate attribute names.
 
- getAdditionalWekaPackageNames(DistributedJobConfig) - Method in class distributed.core.DistributedJob
 
- 
Get a list of weka packages to use from the supplied config
 
- getAggregatedCentroidSummaries() - Method in class weka.distributed.KMeansReduceTask
 
- 
Get the aggregated summary data for each individual centroid.
 
- getAttributeName() - Method in class weka.core.stats.NumericAttributeBinData
 
- 
Get the name of the attribute that this histogram is for
 
- getAxisColour() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the colour that is set to be used for the axis bars.
 
- getAxisLabelColour() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the current colour of the axis labels.
 
- getAxisLabelsFont() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the font that describes the visual style of the labels of the axis.
 
- getAxisThickness() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the width of the axis bars in pixels.
 
- getAxisValuesColour() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the colour of the axis values as they will be painted along the
 axis bars.
 
- getAxisValuesFont() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the font which describes the visual style of the axis values.
 
- getBackgroundColour() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns an object that represents the colour to be used as the background
 for the whole chart.
 
- getBaseFilter() - Method in class weka.filters.MakePreconstructedFilter
 
- 
Get the base filter being wrapped
 
- getBatchSize() - Method in class weka.classifiers.meta.BatchPredictorVote
 
-  
 
- getBatchTrainedIncremental() - Method in class weka.distributed.WekaClassifierEvaluationMapTask
 
- 
Get whether the classifier is an incremental one that has been batch
 trained
 
- getBinFreqs() - Method in class weka.core.stats.NumericAttributeBinData
 
- 
Get a list of bin frequencies for this histogram
 
- getBinLabels() - Method in class weka.core.stats.NumericAttributeBinData
 
- 
Get a list of bin labels for this histogram
 
- getBinWidth() - Method in class weka.core.stats.NumericAttributeBinData
 
- 
Get the bin width for this attribute
 
- getCanopyAssignments() - Method in class weka.clusterers.InstanceWithCanopyAssignments
 
-  
 
- getCapabilities() - Method in class weka.filters.MakePreconstructedFilter
 
-  
 
- getCapabilities(Instances) - Method in class weka.filters.MakePreconstructedFilter
 
-  
 
- getCapabilities() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Returns the capabilities of this evaluator.
 
- getCellHeight() - Method in class org.tc33.jheatchart.HeatChart
 
- 
 
- getCellSize() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the size of each individual data cell that constitutes a value in
 the x,y,z space.
 
- getCellWidth() - Method in class org.tc33.jheatchart.HeatChart
 
- 
 
- getCentroidsForRun() - Method in class weka.distributed.KMeansReduceTask
 
- 
Return the centroids for the run
 
- getCentroidStats() - Method in class weka.distributed.KMeansMapTask
 
- 
Get the summary stats for each centroid
 
- getChartHeight() - Method in class org.tc33.jheatchart.HeatChart
 
- 
 
- getChartImage(boolean) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Generates and returns a new chart Image configured according
 to this object's currently held settings.
 
- getChartImage() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Generates and returns a new chart Image configured according
 to this object's currently held settings.
 
- getChartMargin() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the width of the margin in pixels to be left as empty space around
 the heat map element.
 
- getChartSize() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the size of the chart in pixels as calculated according to the cell
 dimensions, chart margin and other size settings.
 
- getChartWidth() - Method in class org.tc33.jheatchart.HeatChart
 
- 
 
- getClassifier() - Method in class weka.distributed.WekaClassifierEvaluationMapTask
 
- 
Get the classifier used
 
- getClassifier() - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Get the classifier to use
 
- getClassifier() - Method in interface weka.gui.beans.ClassifierProducer
 
- 
Get the trained classifier
 
- getClusterer() - Method in interface weka.gui.beans.ClustererProducer
 
- 
Get the trained clusterer
 
- getColourScale() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the scale that is currently in use to map z-value to colour.
 
- getCompressionLevelForQuartileEstimation() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Get the compression level to use in the TDigest quantile estimators
 
- getComputeQuartilesAsPartOfSummaryStats() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Get whether to include estimated quartiles in the profiling stats
 
- getContinueTrainingUpdateableClassifier() - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Get whether to continue training an incremental (updateable) classifier.
 
- getConverged() - Method in class weka.distributed.KMeansMapTask
 
- 
Get whether the run of k-means that this map tasks is associated with has
 converged
 
- getCoOccurrenceCounts() - Method in class weka.distributed.CorrelationMatrixMapTask
 
- 
The co-occurrence counts (will be null if missings are replaced by means)
 
- getCount(String) - Method in class weka.core.stats.NominalStats
 
- 
Get the count for a given label
 
- getCovariance() - Method in class weka.distributed.CorrelationMatrixMapTask
 
- 
Get whether to compute a covariance matrix rather than a correlation one
 
- getCurrentSketch() - Method in class weka.clusterers.CentroidSketch
 
- 
Get the current sketch as a set of instances
 
- getDateAttributes() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Returns the current attribute range to be forced to type date.
 
- getDateFormat() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Get the format to use for parsing date values.
 
- getDefaultValue(int) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Get the default label for a given attribute.
 
- getDiscarded() - Method in class weka.distributed.WekaClassifierReduceTask
 
- 
Get list of indices of the classifiers that were discarded (if any)
 
- getDistanceFunction() - Method in class weka.clusterers.CentroidSketch
 
- 
Get the distance function being used
 
- getDistanceFunction() - Method in class weka.distributed.CanopyMapTask.ECanopy
 
-  
 
- getDistanceFunction() - Method in class weka.distributed.KMeansMapTask
 
- 
Get the distance function in use
 
- getDontReplaceMissingValues() - Method in class weka.distributed.CanopyMapTask
 
- 
Gets whether missing values are to be replaced.
 
- getDontReplaceMissingValues() - Method in class weka.distributed.KMeansMapTask
 
- 
Gets whether missing values are to be replaced.
 
- getEnclosureCharacters() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Get the character(s) to use/recognize as string enclosures
 
- getErrorsForClusters() - Method in class weka.clusterers.PreconstructedKMeans
 
-  
 
- getEvaluation() - Method in class weka.distributed.WekaClassifierEvaluationMapTask
 
- 
Get the evaluation object
 
- getFailureInfo() - Method in class weka.gui.beans.FailureEvent
 
- 
Get the failure reason
 
- getFieldSeparator() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Returns the character used as column separator.
 
- getFilterSpec(Filter) - Static method in class weka.core.StreamableFilterHelper
 
- 
Create an option specification string for a filter
 
- getFiltersToUse() - Method in class weka.distributed.CanopyMapTask
 
- 
Get the filters to wrap up with the base classifier
 
- getFiltersToUse() - Method in class weka.distributed.KMeansMapTask
 
- 
Get the user-specified filters to use with the k-means clusterer.
 
- getFiltersToUse() - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Get the filters to wrap up with the base classifier
 
- getFinalizedClusterer() - Method in class weka.distributed.CanopyMapTask
 
-  
 
- getFinalizedClusterer() - Method in class weka.distributed.clusterers.CanopyBuilder
 
- 
Return the finalized clusterer.
 
- getFoldNumber() - Method in class weka.distributed.WekaClassifierEvaluationMapTask
 
- 
Get the fold number to evaluate on
 
- getFoldNumber() - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Get the fold number to train the classifier with.
 
- getForceBatchLearningForUpdateableClassifiers() - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Get whether to force batch training for incremental (Updateable)
 classifiers
 
- getForceVotedEnsembleCreation() - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Get whether to force the creation of a Vote ensemble for Aggregateable
 classifiers
 
- getGlobalDistanceFunctionPrimingData() - Method in class weka.distributed.KMeansReduceTask
 
- 
Get the global distance function priming data.
 
- getHeader() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
get the header information (as an Instances object) from what has been seen
 so far by this map task
 
- getHeader(int, List<String>) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Get a header constructed using the supplied attribute names.
 
- getHeader() - Method in class weka.distributed.CSVToARFFHeaderMapTask.HeaderAndQuantileDataHolder
 
- 
Get the header
 
- getHeaderAndQuantileEstimators() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Get the header information and the encoded quantile estimators
 
- getHeatMapForMatrix(Matrix, List<String>) - Static method in class weka.core.ChartUtils
 
- 
Generates a heat map from a matrix of correlations
 
- getHeatMapForMatrix(Matrix, List<String>) - Static method in class weka.distributed.CorrelationMatrixRowReduceTask
 
-  
 
- getHeuristicT2(Instances) - Static method in class weka.distributed.CanopyMapTask
 
-  
 
- getHighValue() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the high value.
 
- getHighValueColour() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the colour that is currently to be displayed for the heat map cells
 with the highest z-value in the dataset.
 
- getHistogramBinLabels() - Method in class weka.core.stats.NumericStats
 
- 
Get the histogram labels
 
- getHistogramFrequencies() - Method in class weka.core.stats.NumericStats
 
- 
Get the histogram bin frequencies
 
- getIgnoreMissingValues() - Method in class weka.distributed.CorrelationMatrixMapTask
 
- 
Get whether to ignore missing values
 
- getImage() - Method in interface weka.gui.beans.ImageProducer
 
- 
Get the image
 
- getInputFormat() - Method in class weka.filters.MakePreconstructedFilter
 
-  
 
- getInstance() - Method in class weka.clusterers.InstanceWithCanopyAssignments
 
-  
 
- getInstances() - Method in interface weka.gui.beans.InstancesProducer
 
- 
Get the set of instances
 
- getIterationNumber() - Method in class weka.distributed.KMeansReduceTask
 
- 
Get the current iteration number
 
- getJobName() - Method in class distributed.core.DistributedJob
 
- 
Get the job name
 
- getJobStatus() - Method in class distributed.core.DistributedJob
 
- 
Get the status of the current job
 
- getKeepClassAttributeIfSet() - Method in class weka.distributed.CorrelationMatrixMapTask
 
- 
Get whether to keep the class attribute as part of the correlation analysis
 
- getKeepClassIfSet() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Get whether the class should be kept
 
- getLabels() - Method in class weka.core.stats.NominalStats
 
- 
Get the set of labels seen by this NominalStats
 
- getLog() - Method in class distributed.core.DistributedJob
 
- 
Get the log in use
 
- getLowValue() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the low value.
 
- getLowValueColour() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the colour that is currently to be displayed for the heat map cells
 with the lowest z-value in the dataset.
 
- getMatrix() - Method in class weka.distributed.CorrelationMatrixMapTask
 
- 
Returns the matrix
 
- getMatrixIsCovariance() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Get whether the matrix is a covariance rather than correlation one
 
- getMaximumAttributeNames() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Gets maximum number of attributes to include in transformed attribute
 names.
 
- getMaximumAttributes() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Gets maximum number of PC attributes to retain.
 
- getMaxNumCandidateCanopiesToHoldInMemory() - Method in class weka.distributed.CanopyMapTask
 
- 
Get the maximum number of candidate canopies to retain in memory during
 training.
 
- getMaxNumCanopies() - Method in class weka.distributed.CanopyMapTask
 
- 
Get the number of clusters to find by this map task.
 
- getMinimumCanopyDensity() - Method in class weka.distributed.CanopyMapTask
 
- 
Get the minimum T2-based density below which a canopy will be pruned during
 periodic pruning.
 
- getMinTrainingFraction() - Method in class weka.distributed.WekaClassifierReduceTask
 
- 
Get the minimum training fraction by which a classifier is discarded.
 
- getMissingFreq() - Method in class weka.core.stats.NumericAttributeBinData
 
- 
Get the number of missing values
 
- getMissingMismatchAttributeInfo() - Method in class weka.distributed.WekaScoringMapTask
 
- 
Get a string summarizing missing and type mismatches between the incoming
 data and what the model expects
 
- getMissingValue() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Returns the current placeholder for missing values.
 
- getMode() - Method in class weka.core.stats.NominalStats
 
- 
Get the index of the mode
 
- getModeLabel() - Method in class weka.core.stats.NominalStats
 
- 
Get the most frequent label (not including missing values)
 
- getName() - Method in class weka.core.stats.Stats
 
- 
Get the name of the attribute that this Stats pertains to
 
- getNominalAttributes() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Returns the current attribute range to be forced to type nominal.
 
- getNominalDefaultLabelSpecs() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Get the default label specifications for nominal attributes
 
- getNominalLabelSpecs() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Get label specifications for nominal attributes.
 
- getNumBins() - Method in class weka.core.stats.NumericAttributeBinData
 
- 
Get the number of bins for this attribute
 
- getNumDecimalPlaces() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Get the number of decimal places for outputting summary stats
 
- getNumericAttributeStatsSparse(Instances, int) - Static method in class distributed.core.DistributedUtils
 
-  
 
- getNumMissing() - Method in class weka.core.stats.NominalStats
 
- 
Get the number of missing values for this attribute
 
- getNumTrainingInstances() - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Get the number of training instances actually used to train the classifier.
 
- getOptions() - Method in class distributed.core.DistributedJobConfig
 
-  
 
- getOptions() - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
-  
 
- getOptions(PreconstructedFilter) - Static method in class weka.core.StreamableFilterHelper
 
- 
Utility method to return an array of options representing the configuration
 of one or more filters wrapped in a PreconstructedFilter
 
- getOptions() - Method in class weka.distributed.CanopyMapTask
 
-  
 
- getOptions() - Method in class weka.distributed.CorrelationMatrixMapTask
 
-  
 
- getOptions() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
-  
 
- getOptions() - Method in class weka.distributed.KMeansMapTask
 
-  
 
- getOptions() - Method in class weka.distributed.WekaClassifierMapTask
 
-  
 
- getOptions() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Gets the current settings of the filter.
 
- getOutputFormat() - Method in class weka.filters.MakePreconstructedFilter
 
-  
 
- getPathToHeaderWihtSummaryAtts() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Get the path to the ARFF header (including summary attributes) used when
 the matrix was constructed.
 
- getPathToMatrix() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Get the path to the correlation/covariance matrix
 
- getPathToPreConstructedFilter() - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
-  
 
- getPayloadElement(String) - Method in class weka.gui.beans.FailureEvent
 
- 
Get a payload element
 
- getPayloadElement(String) - Method in class weka.gui.beans.SuccessEvent
 
- 
Get a payload element
 
- getPeriodicPruningRate() - Method in class weka.distributed.CanopyMapTask
 
- 
Get the how often to prune low density canopies during training
 
- getPreConstructedFilter() - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
- 
Get the PreconstructedFilter to use
 
- getPredictionLabels() - Method in class weka.distributed.WekaScoringMapTask
 
- 
Get a list of labels that the model can predict
 
- getPreprocessingFilters() - Method in class weka.distributed.KMeansMapTask
 
- 
Gets the full set of preprocessing filters
 
- getPrimingDataForDistanceFunction(Instances) - Static method in class weka.clusterers.ClusterUtils
 
- 
Compute priming data for a distance function (i.e.
 
- getPrimingDataForDistanceFunction(Instances) - Static method in class weka.distributed.CanopyReduceTask
 
-  
 
- getProperty(String) - Method in class distributed.core.DistributedJobConfig
 
- 
Get a configuration property.
 
- getPropertyDescriptors() - Method in class weka.distributed.CSVToARFFHeaderMapTaskBeanInfo
 
- 
Get an array of PropertyDescriptors for the CSVToArffHeaderMapTask's public
 properties.
 
- getPropertyDescriptors() - Method in class weka.distributed.KMeansMapTaskBeanInfo
 
- 
Get an array of PropertyDescriptors for the CSVToArffHeaderMapTask's public
 properties.
 
- getPropertyDescriptors() - Method in class weka.distributed.WekaClassifierMapTaskBeanInfo
 
- 
Get an array of PropertyDescriptors for the CSVToArffHeaderMapTask's public
 properties.
 
- getPropertyNames() - Method in class distributed.core.DistributedJobConfig
 
- 
Get a list of all the properties that have values.
 
- getQuantile() - Method in class weka.core.stats.IncrementalQuantileEstimator
 
- 
Return the current estimate of the quantile
 
- getQuantile(String, double) - Method in class weka.core.stats.QuantileCalculator
 
- 
Get a specific quantile for the named attribute
 
- getQuantileEstimator() - Method in class weka.core.stats.NumericStats
 
- 
Get the quantile estimator in use (if any)
 
- getQuantileEstimator(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask.HeaderAndQuantileDataHolder
 
- 
Return a decoded TDigest quantile estimator
 
- getQuantiles(String) - Method in class weka.core.stats.QuantileCalculator
 
- 
Get the computed quantiles for the named attribute
 
- getReservoirSample() - Method in class weka.clusterers.CentroidSketch
 
- 
Get the reservoir sample
 
- getReservoirSampleSize() - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Get the sample size for reservoir sampling
 
- getRevision() - Method in class weka.classifiers.meta.FilteredClassifierUpdateable
 
- 
Returns the revision string.
 
- getRunNumber() - Method in class weka.distributed.KMeansReduceTask
 
- 
Get the run number
 
- getSample() - Method in class weka.core.WeightedReservoirSample
 
- 
Get the sample
 
- getSampleAsInstances() - Method in class weka.core.WeightedReservoirSample
 
- 
Get the current sample as a set of unweighted instances
 
- getSampleAsWeightedInstances() - Method in class weka.core.WeightedReservoirSample
 
- 
Get the current sample as a set of weighted instances
 
- getSeed() - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Get the seed for randomizing the data when batch learning and for reservoir
 sampling.
 
- getStats() - Method in class weka.core.stats.NumericStats
 
- 
Return the array of statistics
 
- getStringAttributes() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Returns the current attribute range to be forced to type string.
 
- getStringLengthStats() - Method in class weka.core.stats.StringStats
 
- 
Get the underlying NumericStats object that is tracking string length stats
 
- getT1MapPhase() - Method in class weka.distributed.CanopyMapTask
 
- 
Get the T1 distance.
 
- getT2MapPhase() - Method in class weka.distributed.CanopyMapTask
 
- 
Get the T2 distance to use.
 
- getTechnicalInformation() - Method in class weka.clusterers.CentroidSketch
 
-  
 
- getTechnicalInformation() - Method in class weka.core.stats.IncrementalQuantileEstimator
 
-  
 
- getText() - Method in interface weka.gui.beans.TextProducer
 
- 
Get the text
 
- getTitle() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the String that will be used as the title of any successive calls
 to generate a chart.
 
- getTitleColour() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the Color that represents the colour the title text
 should be painted in.
 
- getTitleFont() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the Font that describes the visual style of the title.
 
- getTotalNumFolds() - Method in class weka.distributed.WekaClassifierEvaluationMapTask
 
- 
Get the total number of folds
 
- getTotalNumFolds() - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Get the total number of folds to use.
 
- getTotalWithinClustersError() - Method in class weka.distributed.KMeansReduceTask
 
- 
Get the total within cluster error for this run
 
- getTrainingHeader() - Method in interface weka.gui.beans.ClassifierProducer
 
- 
Get the header of the data used to train the classifier
 
- getTrainingHeader() - Method in interface weka.gui.beans.ClustererProducer
 
- 
Get the header of the data used to train the clusterer
 
- getTransformedHeader() - Method in class weka.distributed.KMeansMapTask
 
- 
Get the header of the data after it has been through any pre-processing
 filters specified by the user
 
- getTreatUnparsableNumericValuesAsMissing() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Get whether, for hitherto thought to be numeric columns, to treat any
 unparsable values as missing value.
 
- getTreatZerosAsMissing() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Get whether to treat zeros as missing values for numeric attributes when
 computing summary statistics.
 
- getUseAbsValZ() - Method in class org.tc33.jheatchart.HeatChart
 
-  
 
- getUseReservoirSamplingWhenBatchLearning() - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Get whether to use reservoir sampling when batch learning
 
- getUserSuppliedProperties() - Method in class distributed.core.DistributedJobConfig
 
- 
Get the full map of user-supplied properties
 
- getUserSuppliedProperty(String) - Method in class distributed.core.DistributedJobConfig
 
- 
Get a user-supplied property
 
- getUserSuppliedPropertyNames() - Method in class distributed.core.DistributedJobConfig
 
- 
Get a list of the user-supplied property names
 
- getVarianceCovered() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Gets the proportion of total variance to account for when retaining
 principal components.
 
- getWordCountStats() - Method in class weka.core.stats.StringStats
 
- 
Get the underlying NumericStats object that is tracking word count stats
 
- getXAxisLabel() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the String that will be displayed as a description of the x-axis in
 any generated charts.
 
- getXAxisValuesFrequency() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the frequency of the values displayed along the x-axis.
 
- getXValues() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the x-values which are currently set to display along the x-axis.
 
- getYAxisLabel() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the String that will be displayed as a description of the y-axis in
 any generated charts.
 
- getYAxisValuesFrequency() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the frequency of the values displayed along the y-axis.
 
- getYValues() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the y-values which are currently set to display along the y-axis.
 
- getZValues() - Method in class org.tc33.jheatchart.HeatChart
 
- 
Returns the 2-dimensional array of z-values currently in use.
 
- globalInfo() - Method in class weka.classifiers.meta.FilteredClassifierUpdateable
 
- 
Returns a string describing this classifier.
 
- globalInfo() - Method in class weka.clusterers.CentroidSketch
 
- 
Overview information for this class
 
- globalInfo() - Method in class weka.core.stats.IncrementalQuantileEstimator
 
- 
Global information about this estimator
 
- globalInfo() - Method in class weka.filters.unsupervised.attribute.PreconstructedMissingValuesReplacer
 
-  
 
- globalInfo() - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Returns a string describing this filter.
 
- Group(double) - Constructor for class com.clearspring.analytics.stream.quantile.TDigest.Group
 
-  
 
- Group(double, int) - Constructor for class com.clearspring.analytics.stream.quantile.TDigest.Group
 
-  
 
- Group(double, int, boolean) - Constructor for class com.clearspring.analytics.stream.quantile.TDigest.Group
 
-  
 
- GroupTree - Class in com.clearspring.analytics.stream.quantile
 
- 
A tree containing TDigest.Group.
 
- GroupTree() - Constructor for class com.clearspring.analytics.stream.quantile.GroupTree
 
-  
 
- GroupTree(TDigest.Group) - Constructor for class com.clearspring.analytics.stream.quantile.GroupTree
 
-  
 
- GroupTree(GroupTree, GroupTree) - Constructor for class com.clearspring.analytics.stream.quantile.GroupTree
 
-  
 
- saveToFile(File) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Generates a new chart Image based upon the currently held
 settings and then attempts to save that image to disk, to the location
 provided as a File parameter.
 
- SCALE_EXPONENTIAL - Static variable in class org.tc33.jheatchart.HeatChart
 
- 
A basic exponential scale value of 3.0.
 
- SCALE_LINEAR - Static variable in class org.tc33.jheatchart.HeatChart
 
- 
The linear scale value of 1.0.
 
- SCALE_LOGARITHMIC - Static variable in class org.tc33.jheatchart.HeatChart
 
- 
A basic logarithmic scale value of 0.3.
 
- seedTipText() - Method in class weka.distributed.WekaClassifierMapTask
 
- 
The tool tip text for this property.
 
- SEPARATOR - Static variable in class weka.clusterers.InstanceWithCanopyAssignments
 
-  
 
- serializeAllQuantileEstimators() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Serialize all TDigest quantile estimators in use
 
- serializeCurrentQuantileEstimator() - Method in class weka.core.stats.NumericStats
 
- 
Serialize the current TDigest quantile estimator
 
- setAggregationT1(double) - Method in class weka.distributed.CanopyReduceTask
 
-  
 
- setAggregationT2(double) - Method in class weka.distributed.CanopyReduceTask
 
-  
 
- setAxisColour(Color) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the colour to be used on the axis bars.
 
- setAxisLabelColour(Color) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the colour of the text displayed as axis labels.
 
- setAxisLabelsFont(Font) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the font that describes the visual style of the axis labels.
 
- setAxisThickness(int) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the width of the axis bars in pixels.
 
- setAxisValuesColour(Color) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the colour to be used for the axis values as they will be painted
 along the axis bars.
 
- setAxisValuesFont(Font) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the font which describes the visual style of the axis values.
 
- setBackgroundColour(Color) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the colour to be used on the background of the chart.
 
- setBaseFilter(Filter) - Method in class weka.filters.MakePreconstructedFilter
 
- 
Set the base filter to wrap
 
- setBatchSize(String) - Method in class weka.classifiers.meta.BatchPredictorVote
 
-  
 
- setBatchTrainedIncremental(boolean) - Method in class weka.distributed.WekaClassifierEvaluationMapTask
 
- 
Set whether the classifier is an incremental one that has been batch
 trained
 
- setCellHeight(int) - Method in class org.tc33.jheatchart.HeatChart
 
- 
 
- setCellSize(Dimension) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the size of each individual cell that constitutes a value in x,y,z
 data space.
 
- setCellWidth(int) - Method in class org.tc33.jheatchart.HeatChart
 
- 
 
- setCentroids(Instances) - Method in class weka.distributed.KMeansMapTask
 
- 
Set the cluster centroids to use for this iteration.
 
- setChartMargin(int) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the width of the margin in pixels to be left as empty space around the
 heat map element.
 
- setClassifier(Classifier) - Method in class weka.classifiers.meta.AggregateableFilteredClassifierUpdateable
 
-  
 
- setClassifier(Classifier) - Method in class weka.classifiers.meta.FilteredClassifierUpdateable
 
- 
Set the base learner.
 
- setClassifier(Classifier) - Method in class weka.distributed.WekaClassifierEvaluationMapTask
 
- 
Set the classifier to use
 
- setClassifier(Classifier) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Set the classifier to use
 
- setClusterCentroids(Instances) - Method in class weka.clusterers.PreconstructedKMeans
 
-  
 
- setClusterStats(List<Instances>) - Method in class weka.clusterers.PreconstructedKMeans
 
-  
 
- setColourScale(double) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the scale that is currently in use to map z-value to colour.
 
- setCompression(double) - Method in class weka.core.stats.NumericStats
 
- 
Set the compression level
 
- setCompressionLevelForQuartileEstimation(double) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Set the compression level to use in the TDigest quantile estimators
 
- setComputeQuartilesAsPartOfSummaryStats(boolean) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Set whether to include estimated quartiles in the profiling stats
 
- setConstructed() - Method in class weka.filters.MakePreconstructedFilter
 
- 
Mark this pre-constructed filter as "constructed" - i.e.
 
- setContinueTrainingUpdateableClassifier(boolean) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Set whether to continue training an incremental (updateable) classifier.
 
- setConverged(boolean) - Method in class weka.distributed.KMeansMapTask
 
- 
Set whether the run of k-means that this map is associated with has
 converged or not
 
- setCovariance(boolean) - Method in class weka.distributed.CorrelationMatrixMapTask
 
- 
Set whether to compute a covariance matrix rather than a correlation one
 
- setDateAttributes(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Set the attribute range to be forced to type date.
 
- setDateFormat(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Set the format to use for parsing date values.
 
- setDistanceFunction(NormalizableDistance) - Method in class weka.clusterers.CentroidSketch
 
- 
Set the distance function to use
 
- setDontReplaceMissingValues(boolean) - Method in class weka.distributed.CanopyMapTask
 
- 
Sets whether missing values are to be replaced.
 
- setDontReplaceMissingValues(boolean) - Method in class weka.distributed.KMeansMapTask
 
- 
Sets whether missing values are to be replaced.
 
- setDummyDistancePrimingData(Instances) - Method in class weka.distributed.KMeansMapTask
 
- 
Set the dummy priming data (two-instance dataset that contains global
 min/max for numeric attributes) for the distance function to use when
 normalizing numeric attributes.
 
- setEnclosureCharacters(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Set the character(s) to use/recognize as string enclosures
 
- setEnvironment(Environment) - Method in class distributed.core.DistributedJob
 
-  
 
- setEnvironment(Environment) - Method in class weka.distributed.CanopyMapTask
 
-  
 
- setEnvironment(Environment) - Method in class weka.distributed.WekaClassifierMapTask
 
-  
 
- setFieldSeparator(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Sets the character used as column separator.
 
- setFilter(Filter) - Method in class weka.clusterers.PreconstructedFilteredClusterer
 
-  
 
- setFilteredHeader(Instances) - Method in class weka.clusterers.PreconstructedFilteredClusterer
 
- 
Set the header for the filtered data.
 
- setFiltersToUse(Filter[]) - Method in class weka.distributed.CanopyMapTask
 
- 
Set the filters to wrap up with the base classifier
 
- setFiltersToUse(Filter[]) - Method in class weka.distributed.KMeansMapTask
 
- 
Set the user-specified filters to use with the k-means clusterer.
 
- setFiltersToUse(Filter[]) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Set the filters to wrap up with the base classifier
 
- setFinalNumberOfIterations(int) - Method in class weka.clusterers.PreconstructedKMeans
 
-  
 
- setFoldNumber(int) - Method in class weka.distributed.WekaClassifierEvaluationMapTask
 
- 
Set the fold number to evaluate on.
 
- setFoldNumber(int) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Set the fold number to train the classifier with.
 
- setForceBatchLearningForUpdateableClassifiers(boolean) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Set whether to force batch training for incremental (Updateable)
 classifiers
 
- setForceVotedEnsembleCreation(boolean) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Set whether to force the creation of a Vote ensemble for Aggregateable
 classifiers
 
- setHighValueColour(Color) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the colour to be used to fill cells of the heat map with the highest
 z-values in the dataset.
 
- setHistogramData(List<String>, List<Double>) - Method in class weka.core.stats.NumericStats
 
- 
Set histogram data for this numeric stats
 
- setHistogramMap(Map<Integer, NumericAttributeBinData>) - Method in class weka.core.stats.QuantileCalculator
 
- 
Set a map of initialized numeric histogram data to be updated for each
 incoming row/instance
 
- setIgnoreMissingValues(boolean) - Method in class weka.distributed.CorrelationMatrixMapTask
 
- 
Set whether to ignore missing values
 
- setInitialStartingPoints(Instances) - Method in class weka.clusterers.PreconstructedKMeans
 
-  
 
- setInputFormat(Instances) - Method in class weka.filters.MakePreconstructedFilter
 
-  
 
- setInputFormat(Instances) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Sets the format of the input instances.
 
- setJobDescription(String) - Method in class distributed.core.DistributedJob
 
- 
Set the job description
 
- setJobName(String) - Method in class distributed.core.DistributedJob
 
- 
Set the job name
 
- setJobStatus(DistributedJob.JobStatus) - Method in class distributed.core.DistributedJob
 
- 
Set the status of the current job
 
- setKeepClassAttributeIfSet(boolean) - Method in class weka.distributed.CorrelationMatrixMapTask
 
- 
Set whether to keep the class attribute as part of the correlation analysis
 
- setKeepClassIfSet(boolean) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Set whether the class should be kept
 
- setLog(Logger) - Method in class distributed.core.DistributedJob
 
- 
Set the log to use
 
- setLowValueColour(Color) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the colour to be used to fill cells of the heat map with the lowest
 z-values in the dataset.
 
- setMatrixIsCovariance(boolean) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Set whether the matrix is a covariance rather than correlation one
 
- setMaxFinalNumCanopies(int) - Method in class weka.distributed.CanopyReduceTask
 
-  
 
- setMaximumAttributeNames(int) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Sets maximum number of attributes to include in transformed attribute
 names.
 
- setMaximumAttributes(int) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Sets maximum number of PC attributes to retain.
 
- setMaxNumCandidateCanopiesToHoldInMemory(String) - Method in class weka.distributed.CanopyMapTask
 
- 
Set the maximum number of candidate canopies to retain in memory during
 training.
 
- setMaxNumCanopies(String) - Method in class weka.distributed.CanopyMapTask
 
- 
Set the maximum number of clusters to find in this map task.
 
- setMinimumCanopyDensity(String) - Method in class weka.distributed.CanopyMapTask
 
- 
Set the minimum T2-based density below which a canopy will be pruned during
 periodic pruning.
 
- setMinTrainingFraction(double) - Method in class weka.distributed.WekaClassifierReduceTask
 
- 
Set the minimum training fraction by which a classifier is discarded.
 
- setMissingValue(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Sets the placeholder for missing values.
 
- setModel(Object, Instances, Instances) - Method in class weka.distributed.WekaScoringMapTask
 
- 
Set the model to use
 
- setNominalAttributes(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Sets the attribute range to be forced to type nominal.
 
- setNominalDefaultLabelSpecs(Object[]) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Set the default label specifications for nominal attributes
 
- setNominalLabelSpecs(Object[]) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Set label specifications for nominal attributes.
 
- setNumDecimalPlaces(int) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Set the number of decimal places for outputting summary stats
 
- setNumMissing(double) - Method in class weka.core.stats.NominalStats
 
- 
Set the number of missing values for this attribute
 
- setOptions(String[]) - Method in class distributed.core.DistributedJobConfig
 
-  
 
- setOptions(String[]) - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
-  
 
- setOptions(String[]) - Method in class weka.distributed.CanopyMapTask
 
-  
 
- setOptions(String[]) - Method in class weka.distributed.CorrelationMatrixMapTask
 
-  
 
- setOptions(String[]) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
-  
 
- setOptions(String[]) - Method in class weka.distributed.KMeansMapTask
 
-  
 
- setOptions(String[]) - Method in class weka.distributed.WekaClassifierMapTask
 
-  
 
- setOptions(String[]) - Method in class weka.filters.MakePreconstructedFilter
 
- 
Set the options for this filter
 
- setOptions(String[]) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Parses a list of options for this object.
 
- setPathToHeaderWithSummaryAtts(String) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Set the path to the ARFF header (including summary attributes) used when
 the matrix was constructed.
 
- setPathToMatrix(String) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Set the path to the correlation/covariance matrix
 
- setPathToPreConstructedFilter(String) - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
-  
 
- setPayloadElement(String, T) - Method in class weka.gui.beans.FailureEvent
 
- 
Set a payload element
 
- setPayloadElement(String, T) - Method in class weka.gui.beans.SuccessEvent
 
- 
Set a payload element
 
- setPeriodicPruningRate(String) - Method in class weka.distributed.CanopyMapTask
 
- 
Set the how often to prune low density canopies during training
 
- setPreConstructedFilter(Filter) - Method in class weka.classifiers.meta.AggregateableFilteredClassifier
 
- 
Set the PreconstructedFilter to use
 
- setPriors(double[], double) - Method in class weka.classifiers.evaluation.AggregateableEvaluationWithPriors
 
- 
Set the priors to use.
 
- setProperty(String, String) - Method in class distributed.core.DistributedJobConfig
 
- 
Set a configuration property
 
- setQuantileEstimator(TDigest) - Method in class weka.core.stats.NumericStats
 
- 
Set the quantile estimator to use
 
- setReservoirSampleSize(int) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Set the sample size for reservoir sampling
 
- setSeed(String) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Set the seed for randomizing the data when batch learning and for reservoir
 sampling.
 
- setShowXAxisValues(boolean) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets whether axis values are to be shown at all for the x-axis.
 
- setShowYAxisValues(boolean) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets whether axis values are to be shown at all for the y-axis.
 
- setStats(double[]) - Method in class weka.core.stats.NumericStats
 
- 
Sets the array of statistics.
 
- setStatusMessagePrefix(String) - Method in class distributed.core.DistributedJob
 
- 
Set the prefix to use for log status messages (primarily for use in the
 Knowledge Flow's status area)
 
- setStringAttributes(String) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Sets the attribute range to be forced to type string.
 
- setT1MapPhase(String) - Method in class weka.distributed.CanopyMapTask
 
- 
Set the T1 distance.
 
- setT2MapPhase(String) - Method in class weka.distributed.CanopyMapTask
 
- 
Set the T2 distance to use.
 
- setTitle(String) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the String that will be used as the title of any successive calls to
 generate a chart.
 
- setTitleColour(Color) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the Color that describes the colour to be used for the
 chart title String.
 
- setTitleFont(Font) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets a new Font to be used in rendering the chart's title
 String.
 
- setTotalNumFolds(int) - Method in class weka.distributed.WekaClassifierEvaluationMapTask
 
- 
Set the total number of folds (1 for evaluating on all the data)
 
- setTotalNumFolds(int) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Set the total number of folds to use.
 
- setTreatUnparsableNumericValuesAsMissing(boolean) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Set whether, for hitherto thought to be numeric columns, to treat any
 unparsable values as missing value.
 
- setTreatZerosAsMissing(boolean) - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Set whether to treat zeros as missing values for numeric attributes when
 computing summary statistics.
 
- setup(Instances) - Method in class weka.distributed.CorrelationMatrixMapTask
 
- 
Initialize the map task
 
- setup(Instances, double[], double, long, double) - Method in class weka.distributed.WekaClassifierEvaluationMapTask
 
- 
Setup the task.
 
- setup(Instances) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Initialize the map task
 
- setUseAbsValZ(boolean) - Method in class org.tc33.jheatchart.HeatChart
 
-  
 
- setUseReservoirSamplingWhenBatchLearning(boolean) - Method in class weka.distributed.WekaClassifierMapTask
 
- 
Set whether to use reservoir sampling when batch learning
 
- setUserSuppliedProperty(String, String) - Method in class distributed.core.DistributedJobConfig
 
- 
Set a user-supplied property
 
- setVarianceCovered(double) - Method in class weka.filters.unsupervised.attribute.PreConstructedPCA
 
- 
Sets the amount of variance to account for when retaining principal
 components.
 
- setWithinClustersSumOfErrors(double[]) - Method in class weka.clusterers.PreconstructedKMeans
 
-  
 
- setXAxisLabel(String) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the String that will be displayed as a description of the x-axis in
 any generated charts.
 
- setXAxisValuesFrequency(int) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the frequency of the values displayed along the x-axis.
 
- setXValues(double, double) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the x-values which are plotted along the x-axis.
 
- setXValues(Object[]) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the x-values which are plotted along the x-axis.
 
- setXValuesHorizontal(boolean) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets whether the text of the values along the x-axis should be drawn
 horizontally left-to-right, or vertically top-to-bottom.
 
- setYAxisLabel(String) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the String that will be displayed as a description of the y-axis in
 any generated charts.
 
- setYAxisValuesFrequency(int) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the frequency of the values displayed along the y-axis.
 
- setYValues(double, double) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the y-values which are plotted along the y-axis.
 
- setYValues(Object[]) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets the y-values which are plotted along the y-axis.
 
- setYValuesHorizontal(boolean) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Sets whether the text of the values along the y-axis should be drawn
 horizontally left-to-right, or vertically top-to-bottom.
 
- setZValues(double[][]) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Replaces the z-values array.
 
- setZValues(double[][], double, double) - Method in class org.tc33.jheatchart.HeatChart
 
- 
Replaces the z-values array.
 
- size() - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
-  
 
- size() - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
- 
Returns the number of samples represented in this histogram.
 
- SMALL_ENCODING - Static variable in class com.clearspring.analytics.stream.quantile.TDigest
 
-  
 
- smallByteSize() - Method in class com.clearspring.analytics.stream.quantile.TDigest
 
- 
Returns an upper bound on the number of bytes that will be required to
 represent this histogram in the tighter representation.
 
- smallByteSize() - Method in class weka.core.stats.TDigest
 
- 
Number of bytes required for the compact encoding
 
- splitInstanceAndEncodedCanopies(String) - Static method in class weka.clusterers.InstanceWithCanopyAssignments
 
-  
 
- stackTraceToString(Throwable) - Static method in class distributed.core.DistributedJob
 
- 
Convert a stack trace from a Throwable to a string
 
- Stats - Class in weka.core.stats
 
- 
Stats base class for the numeric and nominal summary meta data
 
- Stats(String) - Constructor for class weka.core.stats.Stats
 
- 
Construct a new Stats
 
- StatsFormatter - Class in weka.core.stats
 
- 
Class for formatting summary stats into nice readable output
 
- StatsFormatter() - Constructor for class weka.core.stats.StatsFormatter
 
-  
 
- statusMessage(String) - Method in class distributed.core.DistributedJob
 
- 
Send a message to the status
 
- stopJob() - Method in class distributed.core.DistributedJob
 
- 
Signal that the job should abort (if it is currently running)
 
- StreamableFilterHelper - Class in weka.core
 
- 
Utility class for wrapping one or more StreamableFilters in a
 MakePreconstructedFilter
 
- StreamableFilterHelper() - Constructor for class weka.core.StreamableFilterHelper
 
-  
 
- stringAttributesTipText() - Method in class weka.distributed.CSVToARFFHeaderMapTask
 
- 
Returns the tip text for this property.
 
- StringStats - Class in weka.core.stats
 
- 
Class for computing string-related stats.
 
- StringStats(String) - Constructor for class weka.core.stats.StringStats
 
- 
Constructs a new StringStats
 
- stripSummaryAtts(Instances) - Static method in class weka.distributed.CSVToARFFHeaderReduceTask
 
- 
Utility method that returns a header Instances object without any summary
 attributes.
 
- SuccessEvent - Class in weka.gui.beans
 
- 
Success event for Hadoop KF steps
 
- SuccessEvent(Object) - Constructor for class weka.gui.beans.SuccessEvent
 
- 
Constructor
 
- SuccessListener - Interface in weka.gui.beans
 
- 
Interface to something that is interested in receiving SuccessEvents
 
- sum() - Method in class com.clearspring.analytics.stream.quantile.GroupTree
 
-