public class AggregateableEvaluationWithPriors
extends weka.classifiers.evaluation.AggregateableEvaluation
| Constructor and Description |
|---|
AggregateableEvaluationWithPriors(weka.classifiers.evaluation.Evaluation eval)
Constructs a new AggregateableEvaluationWithPriors based on another
Evaluation object
|
AggregateableEvaluationWithPriors(weka.core.Instances data)
Constructs a new AggregateableEvaluation object
|
AggregateableEvaluationWithPriors(weka.core.Instances data,
weka.classifiers.CostMatrix costMatrix)
Constructs a new AggregateableEvaluationWithPriors object
|
| Modifier and Type | Method and Description |
|---|---|
void |
deleteStoredPredictions()
Delete any buffered predictions
|
void |
prunePredictions(double retain,
long seed)
Randomly downsample the predictions
|
void |
setPriors(double[] priors,
double count)
Set the priors to use.
|
aggregate, finalizeAggregationareaUnderPRC, areaUnderROC, avgCost, confusionMatrix, correct, correlationCoefficient, coverageOfTestCasesByPredictedRegions, crossValidateModel, crossValidateModel, crossValidateModel, equals, errorRate, evaluateModel, evaluateModel, evaluateModel, evaluateModelOnce, evaluateModelOnce, evaluateModelOnce, evaluateModelOnceAndRecordPrediction, evaluateModelOnceAndRecordPrediction, evaluationForSingleInstance, falseNegativeRate, falseNegativeRate, falsePositiveRate, falsePositiveRate, fMeasure, fMeasure, getAllEvaluationMetricNames, getClassPriors, getDiscardPredictions, getHeader, getMetricsToDisplay, getPluginMetric, getPluginMetrics, getRevision, incorrect, kappa, KBInformation, KBMeanInformation, KBRelativeInformation, main, matthewsCorrelationCoefficient, matthewsCorrelationCoefficient, meanAbsoluteError, meanPriorAbsoluteError, missingClass, numClassified, numFalseNegatives, numFalsePositives, numInstances, numNegatives, numPositives, numPredictedNegatives, numPredictedPositives, numTrueNegatives, numTruePositives, pctCorrect, pctIncorrect, pctUnclassified, precision, predictedClassCounts, predictions, priorEntropy, recall, relativeAbsoluteError, rootMeanPriorSquaredError, rootMeanSquaredError, rootRelativeSquaredError, setDiscardPredictions, setMetricsToDisplay, setPriors, SFEntropyGain, SFMeanEntropyGain, SFMeanPriorEntropy, SFMeanSchemeEntropy, SFPriorEntropy, SFSchemeEntropy, sizeOfPredictedRegions, toClassDetailsString, toClassDetailsString, toCumulativeMarginDistributionString, toggleEvalMetrics, toMatrixString, toMatrixString, toSummaryString, toSummaryString, toSummaryString, totalCost, trueClassCounts, trueNegativeRate, trueNegativeRate, truePositiveRate, truePositiveRate, unclassified, unweightedMacroFmeasure, unweightedMicroFmeasure, updatePriors, useNoPriors, weightedAreaUnderPRC, weightedAreaUnderROC, weightedFalseNegativeRate, weightedFalsePositiveRate, weightedFMeasure, weightedMatthewsCorrelation, weightedPrecision, weightedRecall, weightedTrueNegativeRate, weightedTruePositiveRate, wekaStaticWrapper, withClasspublic AggregateableEvaluationWithPriors(weka.core.Instances data)
throws java.lang.Exception
data - the Instances to usejava.lang.Exception - if a problem occurspublic AggregateableEvaluationWithPriors(weka.core.Instances data,
weka.classifiers.CostMatrix costMatrix)
throws java.lang.Exception
data - the Instances to usecostMatrix - the cost matrix to usejava.lang.Exception - if a problem occurspublic AggregateableEvaluationWithPriors(weka.classifiers.evaluation.Evaluation eval)
throws java.lang.Exception
eval - an Evaluation objectjava.lang.Exception - if a problem occurspublic void setPriors(double[] priors,
double count)
throws java.lang.Exception
priors - the priors to usecount - the number of observations the priors were computed fromjava.lang.Exception - if a problem occurspublic void prunePredictions(double retain,
long seed)
throws java.lang.Exception
retain - the fraction of the predictions to retainseed - the random seed to usejava.lang.Exception - if a problem occurspublic void deleteStoredPredictions()