public class AggregateableEvaluationWithPriors
extends weka.classifiers.evaluation.AggregateableEvaluation
Constructor and Description |
---|
AggregateableEvaluationWithPriors(weka.classifiers.evaluation.Evaluation eval)
Constructs a new AggregateableEvaluationWithPriors based on another
Evaluation object
|
AggregateableEvaluationWithPriors(weka.core.Instances data)
Constructs a new AggregateableEvaluation object
|
AggregateableEvaluationWithPriors(weka.core.Instances data,
weka.classifiers.CostMatrix costMatrix)
Constructs a new AggregateableEvaluationWithPriors object
|
Modifier and Type | Method and Description |
---|---|
void |
deleteStoredPredictions()
Delete any buffered predictions
|
void |
prunePredictions(double retain,
long seed)
Randomly downsample the predictions
|
void |
setPriors(double[] priors,
double count)
Set the priors to use.
|
aggregate, finalizeAggregation
areaUnderPRC, areaUnderROC, avgCost, confusionMatrix, correct, correlationCoefficient, coverageOfTestCasesByPredictedRegions, crossValidateModel, crossValidateModel, crossValidateModel, equals, errorRate, evaluateModel, evaluateModel, evaluateModel, evaluateModelOnce, evaluateModelOnce, evaluateModelOnce, evaluateModelOnceAndRecordPrediction, evaluateModelOnceAndRecordPrediction, evaluationForSingleInstance, falseNegativeRate, falseNegativeRate, falsePositiveRate, falsePositiveRate, fMeasure, fMeasure, getAllEvaluationMetricNames, getClassPriors, getDiscardPredictions, getHeader, getMetricsToDisplay, getPluginMetric, getPluginMetrics, getRevision, incorrect, kappa, KBInformation, KBMeanInformation, KBRelativeInformation, main, matthewsCorrelationCoefficient, matthewsCorrelationCoefficient, meanAbsoluteError, meanPriorAbsoluteError, missingClass, numClassified, numFalseNegatives, numFalsePositives, numInstances, numNegatives, numPositives, numPredictedNegatives, numPredictedPositives, numTrueNegatives, numTruePositives, pctCorrect, pctIncorrect, pctUnclassified, precision, predictedClassCounts, predictions, priorEntropy, recall, relativeAbsoluteError, rootMeanPriorSquaredError, rootMeanSquaredError, rootRelativeSquaredError, setDiscardPredictions, setMetricsToDisplay, setPriors, SFEntropyGain, SFMeanEntropyGain, SFMeanPriorEntropy, SFMeanSchemeEntropy, SFPriorEntropy, SFSchemeEntropy, sizeOfPredictedRegions, toClassDetailsString, toClassDetailsString, toCumulativeMarginDistributionString, toggleEvalMetrics, toMatrixString, toMatrixString, toSummaryString, toSummaryString, toSummaryString, totalCost, trueClassCounts, trueNegativeRate, trueNegativeRate, truePositiveRate, truePositiveRate, unclassified, unweightedMacroFmeasure, unweightedMicroFmeasure, updatePriors, useNoPriors, weightedAreaUnderPRC, weightedAreaUnderROC, weightedFalseNegativeRate, weightedFalsePositiveRate, weightedFMeasure, weightedMatthewsCorrelation, weightedPrecision, weightedRecall, weightedTrueNegativeRate, weightedTruePositiveRate, wekaStaticWrapper, withClass
public AggregateableEvaluationWithPriors(weka.core.Instances data) throws java.lang.Exception
data
- the Instances to usejava.lang.Exception
- if a problem occurspublic AggregateableEvaluationWithPriors(weka.core.Instances data, weka.classifiers.CostMatrix costMatrix) throws java.lang.Exception
data
- the Instances to usecostMatrix
- the cost matrix to usejava.lang.Exception
- if a problem occurspublic AggregateableEvaluationWithPriors(weka.classifiers.evaluation.Evaluation eval) throws java.lang.Exception
eval
- an Evaluation objectjava.lang.Exception
- if a problem occurspublic void setPriors(double[] priors, double count) throws java.lang.Exception
priors
- the priors to usecount
- the number of observations the priors were computed fromjava.lang.Exception
- if a problem occurspublic void prunePredictions(double retain, long seed) throws java.lang.Exception
retain
- the fraction of the predictions to retainseed
- the random seed to usejava.lang.Exception
- if a problem occurspublic void deleteStoredPredictions()