public class WekaClassifierReduceTask
extends java.lang.Object
implements java.io.Serializable
Constructor and Description |
---|
WekaClassifierReduceTask() |
Modifier and Type | Method and Description |
---|---|
weka.classifiers.Classifier |
aggregate(java.util.List<weka.classifiers.Classifier> classifiers)
Aggregate the supplied list of classifiers
|
weka.classifiers.Classifier |
aggregate(java.util.List<weka.classifiers.Classifier> classifiers,
java.util.List<java.lang.Integer> numTrainingInstancesPerClassifier,
boolean forceVote)
Aggregated the supplied list of classifiers.
|
java.util.List<java.lang.Integer> |
getDiscarded()
Get list of indices of the classifiers that were discarded (if any)
|
double |
getMinTrainingFraction()
Get the minimum training fraction by which a classifier is discarded.
|
void |
setMinTrainingFraction(double m)
Set the minimum training fraction by which a classifier is discarded.
|
public weka.classifiers.Classifier aggregate(java.util.List<weka.classifiers.Classifier> classifiers) throws DistributedWekaException
classifiers
- the classifiers to aggregateDistributedWekaException
- if a problem occurspublic weka.classifiers.Classifier aggregate(java.util.List<weka.classifiers.Classifier> classifiers, java.util.List<java.lang.Integer> numTrainingInstancesPerClassifier, boolean forceVote) throws DistributedWekaException
classifiers
- the list of classifiers to aggregatenumTrainingInstancesPerClassifier
- a list of integers, where each
entry is the number of training instances seen by the
corresponding classifierforceVote
- true if a Vote ensemble is to be created (even if all
classifiers could be directly aggregated to one model of the same
typeDistributedWekaException
- if a problem occurspublic java.util.List<java.lang.Integer> getDiscarded()
public void setMinTrainingFraction(double m)
m
- a number between 0 and 1.public double getMinTrainingFraction()