public class MIWrapper extends SingleClassifierEnhancer implements MultiInstanceCapabilitiesHandler, OptionHandler, TechnicalInformationHandler
 @techreport{Frank2003,
    address = {Department of Computer Science, University of Waikato, Hamilton, NZ},
    author = {E. T. Frank and X. Xu},
    institution = {University of Waikato},
    month = {06},
    title = {Applying propositional learning algorithms to multi-instance data},
    year = {2003}
 }
 
 
 
 
 Valid options are: 
 
 -P [1|2|3] The method used in testing: 1.arithmetic average 2.geometric average 3.max probability of positive bag. (default: 1)
-A [0|1|2|3] The type of weight setting for each single-instance: 0.keep the weight to be the same as the original value; 1.weight = 1.0 2.weight = 1.0/Total number of single-instance in the corresponding bag 3. weight = Total number of single-instance / (Total number of bags * Total number of single-instance in the corresponding bag). (default: 3)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the console
| Modifier and Type | Field and Description | 
|---|---|
| static Tag[] | TAGS_TESTMETHODthe test methods | 
| static int | TESTMETHOD_ARITHMETICarithmetic average | 
| static int | TESTMETHOD_GEOMETRICgeometric average | 
| static int | TESTMETHOD_MAXPROBmax probability of positive bag | 
| Constructor and Description | 
|---|
| MIWrapper() | 
| Modifier and Type | Method and Description | 
|---|---|
| void | buildClassifier(Instances data)Builds the classifier | 
| double[] | distributionForInstance(Instance exmp)Computes the distribution for a given exemplar | 
| Capabilities | getCapabilities()Returns default capabilities of the classifier. | 
| SelectedTag | getMethod()Get the method used in testing. | 
| Capabilities | getMultiInstanceCapabilities()Returns the capabilities of this multi-instance classifier for the
 relational data. | 
| java.lang.String[] | getOptions()Gets the current settings of the Classifier. | 
| java.lang.String | getRevision()Returns the revision string. | 
| TechnicalInformation | getTechnicalInformation()Returns an instance of a TechnicalInformation object, containing 
 detailed information about the technical background of this class,
 e.g., paper reference or book this class is based on. | 
| SelectedTag | getWeightMethod()Returns the current weighting method for instances. | 
| java.lang.String | globalInfo()Returns a string describing this filter | 
| java.util.Enumeration | listOptions()Returns an enumeration describing the available options. | 
| static void | main(java.lang.String[] argv)Main method for testing this class. | 
| java.lang.String | methodTipText()Returns the tip text for this property | 
| void | setMethod(SelectedTag method)Set the method used in testing. | 
| void | setOptions(java.lang.String[] options)Parses a given list of options. | 
| void | setWeightMethod(SelectedTag method)The new method for weighting the instances. | 
| java.lang.String | toString()Gets a string describing the classifier. | 
| java.lang.String | weightMethodTipText()Returns the tip text for this property | 
classifierTipText, getClassifier, setClassifierclassifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, setDebugpublic static final int TESTMETHOD_ARITHMETIC
public static final int TESTMETHOD_GEOMETRIC
public static final int TESTMETHOD_MAXPROB
public static final Tag[] TAGS_TESTMETHOD
public java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic java.util.Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class SingleClassifierEnhancerpublic void setOptions(java.lang.String[] options)
                throws java.lang.Exception
-P [1|2|3] The method used in testing: 1.arithmetic average 2.geometric average 3.max probability of positive bag. (default: 1)
-A [0|1|2|3] The type of weight setting for each single-instance: 0.keep the weight to be the same as the original value; 1.weight = 1.0 2.weight = 1.0/Total number of single-instance in the corresponding bag 3. weight = Total number of single-instance / (Total number of bags * Total number of single-instance in the corresponding bag). (default: 3)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the console
setOptions in interface OptionHandlersetOptions in class SingleClassifierEnhanceroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class SingleClassifierEnhancerpublic java.lang.String weightMethodTipText()
public void setWeightMethod(SelectedTag method)
method - the new methodpublic SelectedTag getWeightMethod()
public java.lang.String methodTipText()
public void setMethod(SelectedTag method)
method - the index of method to use.public SelectedTag getMethod()
public Capabilities getCapabilities()
getCapabilities in interface CapabilitiesHandlergetCapabilities in class SingleClassifierEnhancerCapabilitiespublic Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities in interface MultiInstanceCapabilitiesHandlerCapabilitiespublic void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier in class Classifierdata - the training data to be used for generating the
 boosted classifier.java.lang.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(Instance exmp) throws java.lang.Exception
distributionForInstance in class Classifierexmp - the exemplar for which distribution is computedjava.lang.Exception - if the distribution can't be computed successfullypublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class Classifierpublic static void main(java.lang.String[] argv)
argv - should contain the command line arguments to the
 scheme (see Evaluation)