public class MISVM extends Classifier implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler
 @inproceedings{Andrews2003,
    author = {Stuart Andrews and Ioannis Tsochantaridis and Thomas Hofmann},
    booktitle = {Advances in Neural Information Processing Systems 15},
    pages = {561-568},
    publisher = {MIT Press},
    title = {Support Vector Machines for Multiple-Instance Learning},
    year = {2003}
 }
 
 
 
 
 Valid options are: 
 
 -D If set, classifier is run in debug mode and may output additional info to the console
-C <double> The complexity constant C. (default 1)
-N <default 0> Whether to 0=normalize/1=standardize/2=neither. (default: 0=normalize)
-I <num> The maximum number of iterations to perform. (default: 500)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number), 0 for full cache and -1 to turn it off. (default: 250007)
-E <num> The Exponent to use. (default: 1.0)
-L Use lower-order terms. (default: no)
SMO, 
Serialized Form| Modifier and Type | Field and Description | 
|---|---|
| static int | FILTER_NONENo normalization/standardization | 
| static int | FILTER_NORMALIZENormalize training data | 
| static int | FILTER_STANDARDIZEStandardize training data | 
| static Tag[] | TAGS_FILTERThe filter to apply to the training data | 
| Constructor and Description | 
|---|
| MISVM() | 
| Modifier and Type | Method and Description | 
|---|---|
| void | buildClassifier(Instances train)Builds the classifier | 
| java.lang.String | cTipText()Returns the tip text for this property | 
| double[] | distributionForInstance(Instance exmp)Computes the distribution for a given exemplar | 
| java.lang.String | filterTypeTipText()Returns the tip text for this property | 
| double | getC()Get the value of C. | 
| Capabilities | getCapabilities()Returns default capabilities of the classifier. | 
| SelectedTag | getFilterType()Gets how the training data will be transformed. | 
| Kernel | getKernel()Gets the kernel to use. | 
| int | getMaxIterations()Gets the maximum number of iterations. | 
| Capabilities | getMultiInstanceCapabilities()Returns the capabilities of this multi-instance classifier for the
 relational data. | 
| java.lang.String[] | getOptions()Gets the current settings of the classifier. | 
| java.lang.String | getRevision()Returns the revision string. | 
| TechnicalInformation | getTechnicalInformation()Returns an instance of a TechnicalInformation object, containing 
 detailed information about the technical background of this class,
 e.g., paper reference or book this class is based on. | 
| java.lang.String | globalInfo()Returns a string describing this filter | 
| java.lang.String | kernelTipText()Returns the tip text for this property | 
| java.util.Enumeration | listOptions()Returns an enumeration describing the available options | 
| static void | main(java.lang.String[] argv)Main method for testing this class. | 
| java.lang.String | maxIterationsTipText()Returns the tip text for this property | 
| void | setC(double v)Set the value of C. | 
| void | setFilterType(SelectedTag newType)Sets how the training data will be transformed. | 
| void | setKernel(Kernel value)Sets the kernel to use. | 
| void | setMaxIterations(int value)Sets the maximum number of iterations. | 
| void | setOptions(java.lang.String[] options)Parses a given list of options. | 
classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, setDebugpublic static final int FILTER_NORMALIZE
public static final int FILTER_STANDARDIZE
public static final int FILTER_NONE
public static final Tag[] TAGS_FILTER
public java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic java.util.Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class Classifierpublic void setOptions(java.lang.String[] options)
                throws java.lang.Exception
-D If set, classifier is run in debug mode and may output additional info to the console
-C <double> The complexity constant C. (default 1)
-N <default 0> Whether to 0=normalize/1=standardize/2=neither. (default: 0=normalize)
-I <num> The maximum number of iterations to perform. (default: 500)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number), 0 for full cache and -1 to turn it off. (default: 250007)
-E <num> The Exponent to use. (default: 1.0)
-L Use lower-order terms. (default: no)
setOptions in interface OptionHandlersetOptions in class Classifieroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class Classifierpublic java.lang.String kernelTipText()
public Kernel getKernel()
public void setKernel(Kernel value)
value - the kernelpublic java.lang.String filterTypeTipText()
public void setFilterType(SelectedTag newType)
newType - the new filtering modepublic SelectedTag getFilterType()
public java.lang.String cTipText()
public double getC()
public void setC(double v)
v - Value to assign to C.public java.lang.String maxIterationsTipText()
public int getMaxIterations()
public void setMaxIterations(int value)
value - the maximum number of iterations.public Capabilities getCapabilities()
getCapabilities in interface CapabilitiesHandlergetCapabilities in class ClassifierCapabilitiespublic Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities in interface MultiInstanceCapabilitiesHandlerCapabilitiespublic void buildClassifier(Instances train) throws java.lang.Exception
buildClassifier in class Classifiertrain - the training data to be used for generating the
 boosted classifier.java.lang.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(Instance exmp) throws java.lang.Exception
distributionForInstance in class Classifierexmp - the exemplar for which distribution is computedjava.lang.Exception - if the distribution can't be computed successfullypublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class Classifierpublic static void main(java.lang.String[] argv)
argv - should contain the command line arguments to the
 scheme (see Evaluation)