public class SymmetricalUncertAttributeSetEval
extends weka.attributeSelection.AttributeSetEvaluator
implements weka.core.OptionHandler, weka.core.TechnicalInformationHandler
@inproceedings{Yu2003, author = {Lei Yu and Huan Liu}, booktitle = {Proceedings of the Twentieth International Conference on Machine Learning}, pages = {856-863}, publisher = {AAAI Press}, title = {Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution}, year = {2003} }Valid options are:
-M treat missing values as a seperate value.
Discretize
,
Serialized FormConstructor and Description |
---|
SymmetricalUncertAttributeSetEval()
Constructor
|
Modifier and Type | Method and Description |
---|---|
void |
buildEvaluator(weka.core.Instances data)
Initializes a symmetrical uncertainty attribute evaluator.
|
double |
evaluateAttribute(int attribute)
evaluates an individual attribute by measuring the symmetrical
uncertainty between it and the class.
|
double |
evaluateAttribute(int[] attributes,
int[] classAttributes)
calculate symmetrical uncertainty between sets of attributes
|
weka.core.Capabilities |
getCapabilities()
Returns the capabilities of this evaluator.
|
boolean |
getMissingMerge()
get whether missing values are being distributed or not
|
java.lang.String[] |
getOptions()
Gets the current settings of WrapperSubsetEval.
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing this attribute evaluator
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
missingMergeTipText()
Returns the tip text for this property
|
void |
setMissingMerge(boolean b)
distribute the counts for missing values across observed values
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
java.lang.String |
toString()
Return a description of the evaluator
|
clean, doNotCheckCapabilitiesTipText, forName, getDoNotCheckCapabilities, makeCopies, postExecution, postProcess, preExecution, run, runEvaluator, setDoNotCheckCapabilities
public SymmetricalUncertAttributeSetEval()
public java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface weka.core.TechnicalInformationHandler
public java.util.Enumeration listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.attributeSelection.ASEvaluation
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-M treat missing values as a seperate value.
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.attributeSelection.ASEvaluation
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String missingMergeTipText()
public void setMissingMerge(boolean b)
b
- true=distribute missing values.public boolean getMissingMerge()
public java.lang.String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.attributeSelection.ASEvaluation
public weka.core.Capabilities getCapabilities()
getCapabilities
in interface weka.core.CapabilitiesHandler
getCapabilities
in class weka.attributeSelection.ASEvaluation
Capabilities
public void buildEvaluator(weka.core.Instances data) throws java.lang.Exception
buildEvaluator
in class weka.attributeSelection.ASEvaluation
data
- set of instances serving as training datajava.lang.Exception
- if the evaluator has not been
generated successfullypublic double evaluateAttribute(int attribute) throws java.lang.Exception
evaluateAttribute
in class weka.attributeSelection.AttributeSetEvaluator
attribute
- the index of the attribute to be evaluatedjava.lang.Exception
- if the attribute could not be evaluatedpublic double evaluateAttribute(int[] attributes, int[] classAttributes) throws java.lang.Exception
evaluateAttribute
in class weka.attributeSelection.AttributeSetEvaluator
attributes
- the indexes of the attributesclassAttributes
- the indexes of the attributes whose combination will
be used as class labeljava.lang.Exception
- if the attribute could not be evaluatedpublic java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String getRevision()
getRevision
in interface weka.core.RevisionHandler
getRevision
in class weka.attributeSelection.ASEvaluation
public static void main(java.lang.String[] argv)
argv
- should contain the following arguments:
-t training file