public class SymmetricalUncertAttributeSetEval
extends weka.attributeSelection.AttributeSetEvaluator
implements weka.core.OptionHandler, weka.core.TechnicalInformationHandler
@inproceedings{Yu2003,
author = {Lei Yu and Huan Liu},
booktitle = {Proceedings of the Twentieth International Conference on Machine Learning},
pages = {856-863},
publisher = {AAAI Press},
title = {Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution},
year = {2003}
}
Valid options are:
-M treat missing values as a seperate value.
Discretize,
Serialized Form| Constructor and Description |
|---|
SymmetricalUncertAttributeSetEval()
Constructor
|
| Modifier and Type | Method and Description |
|---|---|
void |
buildEvaluator(weka.core.Instances data)
Initializes a symmetrical uncertainty attribute evaluator.
|
double |
evaluateAttribute(int attribute)
evaluates an individual attribute by measuring the symmetrical
uncertainty between it and the class.
|
double |
evaluateAttribute(int[] attributes,
int[] classAttributes)
calculate symmetrical uncertainty between sets of attributes
|
weka.core.Capabilities |
getCapabilities()
Returns the capabilities of this evaluator.
|
boolean |
getMissingMerge()
get whether missing values are being distributed or not
|
java.lang.String[] |
getOptions()
Gets the current settings of WrapperSubsetEval.
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing this attribute evaluator
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
missingMergeTipText()
Returns the tip text for this property
|
void |
setMissingMerge(boolean b)
distribute the counts for missing values across observed values
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
java.lang.String |
toString()
Return a description of the evaluator
|
clean, doNotCheckCapabilitiesTipText, forName, getDoNotCheckCapabilities, makeCopies, postExecution, postProcess, preExecution, run, runEvaluator, setDoNotCheckCapabilitiespublic SymmetricalUncertAttributeSetEval()
public java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic java.util.Enumeration listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.attributeSelection.ASEvaluationpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-M treat missing values as a seperate value.
setOptions in interface weka.core.OptionHandlersetOptions in class weka.attributeSelection.ASEvaluationoptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String missingMergeTipText()
public void setMissingMerge(boolean b)
b - true=distribute missing values.public boolean getMissingMerge()
public java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.attributeSelection.ASEvaluationpublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.attributeSelection.ASEvaluationCapabilitiespublic void buildEvaluator(weka.core.Instances data)
throws java.lang.Exception
buildEvaluator in class weka.attributeSelection.ASEvaluationdata - set of instances serving as training datajava.lang.Exception - if the evaluator has not been
generated successfullypublic double evaluateAttribute(int attribute)
throws java.lang.Exception
evaluateAttribute in class weka.attributeSelection.AttributeSetEvaluatorattribute - the index of the attribute to be evaluatedjava.lang.Exception - if the attribute could not be evaluatedpublic double evaluateAttribute(int[] attributes,
int[] classAttributes)
throws java.lang.Exception
evaluateAttribute in class weka.attributeSelection.AttributeSetEvaluatorattributes - the indexes of the attributesclassAttributes - the indexes of the attributes whose combination will
be used as class labeljava.lang.Exception - if the attribute could not be evaluatedpublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.attributeSelection.ASEvaluationpublic static void main(java.lang.String[] argv)
argv - should contain the following arguments:
-t training file