public class FCBFSearch
extends weka.attributeSelection.ASSearch
implements weka.attributeSelection.RankedOutputSearch, weka.attributeSelection.StartSetHandler, weka.core.OptionHandler, weka.core.TechnicalInformationHandler
@inproceedings{Yu2003,
author = {Lei Yu and Huan Liu},
booktitle = {Proceedings of the Twentieth International Conference on Machine Learning},
pages = {856-863},
publisher = {AAAI Press},
title = {Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution},
year = {2003}
}
Valid options are:
-D <create dataset> Specify Whether the selector generates a new dataset.
-P <start set> Specify a starting set of attributes. Eg. 1,3,5-7. Any starting attributes specified are ignored during the ranking.
-T <threshold> Specify a theshold by which attributes may be discarded from the ranking.
-N <num to select> Specify number of attributes to select
| Constructor and Description |
|---|
FCBFSearch()
Constructor
|
| Modifier and Type | Method and Description |
|---|---|
java.lang.String |
generateDataOutputTipText()
Returns the tip text for this property
|
java.lang.String |
generateRankingTipText()
Returns the tip text for this property
|
int |
getCalculatedNumToSelect()
Gets the calculated number to select.
|
boolean |
getGenerateDataOutput()
Returns the flag, by which the AttributeSelection module decide
whether create a new dataset according to the selected features.
|
boolean |
getGenerateRanking()
This is a dummy method.
|
int |
getNumToSelect()
Gets the number of attributes to be retained.
|
java.lang.String[] |
getOptions()
Gets the current settings of ReliefFAttributeEval.
|
java.lang.String |
getRevision()
Returns the revision string.
|
java.lang.String |
getStartSet()
Returns a list of attributes (and or attribute ranges) as a String
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
double |
getThreshold()
Returns the threshold so that the AttributeSelection module can
discard attributes from the ranking.
|
java.lang.String |
globalInfo()
Returns a string describing this search method
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
java.lang.String |
numToSelectTipText()
Returns the tip text for this property
|
double[][] |
rankedAttributes()
Sorts the evaluated attribute list
|
int[] |
search(weka.attributeSelection.ASEvaluation ASEval,
weka.core.Instances data)
Kind of a dummy search algorithm.
|
void |
setGenerateDataOutput(boolean doGenerate)
Sets the flag, by which the AttributeSelection module decide
whether create a new dataset according to the selected features.
|
void |
setGenerateRanking(boolean doRank)
This is a dummy set method---Ranker is ONLY capable of producing
a ranked list of attributes for attribute evaluators.
|
void |
setNumToSelect(int n)
Specify the number of attributes to select from the ranked list.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setStartSet(java.lang.String startSet)
Sets a starting set of attributes for the search.
|
void |
setThreshold(double threshold)
Set the threshold by which the AttributeSelection module can discard
attributes.
|
java.lang.String |
startSetTipText()
Returns the tip text for this property
|
java.lang.String |
thresholdTipText()
Returns the tip text for this property
|
java.lang.String |
toString()
returns a description of the search as a String
|
public java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic java.lang.String numToSelectTipText()
public void setNumToSelect(int n)
setNumToSelect in interface weka.attributeSelection.RankedOutputSearchn - the number of attributes to retainpublic int getNumToSelect()
getNumToSelect in interface weka.attributeSelection.RankedOutputSearchpublic int getCalculatedNumToSelect()
getCalculatedNumToSelect in interface weka.attributeSelection.RankedOutputSearchpublic java.lang.String thresholdTipText()
public void setThreshold(double threshold)
setThreshold in interface weka.attributeSelection.RankedOutputSearchthreshold - the threshold.public double getThreshold()
getThreshold in interface weka.attributeSelection.RankedOutputSearchpublic java.lang.String generateRankingTipText()
public void setGenerateRanking(boolean doRank)
setGenerateRanking in interface weka.attributeSelection.RankedOutputSearchdoRank - this parameter is N/A and is ignoredpublic boolean getGenerateRanking()
getGenerateRanking in interface weka.attributeSelection.RankedOutputSearchpublic java.lang.String generateDataOutputTipText()
public void setGenerateDataOutput(boolean doGenerate)
doGenerate - the flag, by which the AttributeSelection module
decide whether create a new dataset according to the selected
featurespublic boolean getGenerateDataOutput()
public java.lang.String startSetTipText()
public void setStartSet(java.lang.String startSet)
throws java.lang.Exception
setStartSet in interface weka.attributeSelection.StartSetHandlerstartSet - a string containing a list of attributes (and or ranges),
eg. 1,2,6,10-15.java.lang.Exception - if start set can't be set.public java.lang.String getStartSet()
getStartSet in interface weka.attributeSelection.StartSetHandlerpublic java.util.Enumeration listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.attributeSelection.ASSearchpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-D <create dataset> Specify Whether the selector generates a new dataset.
-P <start set> Specify a starting set of attributes. Eg. 1,3,5-7. Any starting attributes specified are ignored during the ranking.
-T <threshold> Specify a theshold by which attributes may be discarded from the ranking.
-N <num to select> Specify number of attributes to select
setOptions in interface weka.core.OptionHandlersetOptions in class weka.attributeSelection.ASSearchoptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.attributeSelection.ASSearchpublic int[] search(weka.attributeSelection.ASEvaluation ASEval,
weka.core.Instances data)
throws java.lang.Exception
search in class weka.attributeSelection.ASSearchASEval - the attribute evaluator to guide the searchdata - the training instances.java.lang.Exception - if the search can't be completedpublic double[][] rankedAttributes()
throws java.lang.Exception
rankedAttributes in interface weka.attributeSelection.RankedOutputSearchjava.lang.Exception - of sorting can't be done.public java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.attributeSelection.ASSearch