public class CascadeSimpleKMeans
extends weka.clusterers.RandomizableClusterer
implements weka.clusterers.Clusterer, weka.core.TechnicalInformationHandler
| Constructor and Description |
|---|
CascadeSimpleKMeans() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClusterer(weka.core.Instances data) |
int |
clusterInstance(weka.core.Instance instance) |
java.lang.String |
distanceFunctionTipText() |
double[] |
distributionForInstance(weka.core.Instance instance) |
weka.core.Capabilities |
getCapabilities() |
weka.core.DistanceFunction |
getDistanceFunction() |
boolean |
getInitializeUsingKMeansPlusPlusMethod()
Get whether to initialize using the probabilistic farthest
first like method of the k-means++ algorithm (rather than
the standard random selection of initial cluster centers).
|
int |
getMaxIterations() |
int |
getMaxNumClusters() |
int |
getMinNumClusters() |
java.lang.String[] |
getOptions()
Gets the current settings of SimpleKMeans.
|
int |
getRestarts() |
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation() |
java.lang.String |
globalInfo()
Returns a string describing this clusterer.
|
java.lang.String |
initializeUsingKMeansPlusPlusMethodTipText()
Returns the tip text for this property.
|
boolean |
isManuallySelectNumClusters() |
boolean |
isPrintDebug() |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] args)
Main method for executing this class.
|
java.lang.String |
manuallySelectNumClustersTipText() |
java.lang.String |
maxIterationsTipText() |
java.lang.String |
maxNumClustersTipText() |
java.lang.String |
minNumClustersTipText() |
int |
numberOfClusters() |
java.lang.String |
printDebugTipText() |
java.lang.String |
restartsTipText() |
void |
setDistanceFunction(weka.core.DistanceFunction distanceFunction) |
void |
setInitializeUsingKMeansPlusPlusMethod(boolean k)
Set whether to initialize using the probabilistic farthest
first like method of the k-means++ algorithm (rather than
the standard random selection of initial cluster centers).
|
void |
setManuallySelectNumClusters(boolean manuallySelectNumClusters) |
void |
setMaxIterations(int maxIterations) |
void |
setMaxNumClusters(int maxNumClusters) |
void |
setMinNumClusters(int minNumClusters) |
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setPrintDebug(boolean printDebug) |
void |
setRestarts(int restarts) |
java.lang.String |
toString() |
debugTipText, doNotCheckCapabilitiesTipText, forName, getDebug, getDoNotCheckCapabilities, makeCopies, makeCopy, postExecution, preExecution, run, runClusterer, setDebug, setDoNotCheckCapabilitiespublic weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String globalInfo()
public void buildClusterer(weka.core.Instances data)
throws java.lang.Exception
buildClusterer in interface weka.clusterers.ClustererbuildClusterer in class weka.clusterers.AbstractClustererjava.lang.Exceptionpublic int clusterInstance(weka.core.Instance instance)
throws java.lang.Exception
clusterInstance in interface weka.clusterers.ClustererclusterInstance in class weka.clusterers.AbstractClustererjava.lang.Exceptionpublic double[] distributionForInstance(weka.core.Instance instance)
throws java.lang.Exception
distributionForInstance in interface weka.clusterers.ClustererdistributionForInstance in class weka.clusterers.AbstractClustererjava.lang.Exceptionpublic int numberOfClusters()
throws java.lang.Exception
numberOfClusters in interface weka.clusterers.ClusterernumberOfClusters in class weka.clusterers.AbstractClustererjava.lang.Exceptionpublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.clusterers.ClusterergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.clusterers.AbstractClustererpublic java.lang.String minNumClustersTipText()
public int getMinNumClusters()
public void setMinNumClusters(int minNumClusters)
public java.lang.String maxNumClustersTipText()
public int getMaxNumClusters()
public void setMaxNumClusters(int maxNumClusters)
public java.lang.String restartsTipText()
public int getRestarts()
public void setRestarts(int restarts)
public java.lang.String printDebugTipText()
public boolean isPrintDebug()
public void setPrintDebug(boolean printDebug)
public java.lang.String distanceFunctionTipText()
public weka.core.DistanceFunction getDistanceFunction()
public void setDistanceFunction(weka.core.DistanceFunction distanceFunction)
public java.lang.String maxIterationsTipText()
public int getMaxIterations()
public void setMaxIterations(int maxIterations)
public java.lang.String manuallySelectNumClustersTipText()
public boolean isManuallySelectNumClusters()
public void setManuallySelectNumClusters(boolean manuallySelectNumClusters)
public java.lang.String initializeUsingKMeansPlusPlusMethodTipText()
public void setInitializeUsingKMeansPlusPlusMethod(boolean k)
k - true if the k-means++ method is to be used to select
initial cluster centers.public boolean getInitializeUsingKMeansPlusPlusMethod()
public java.util.Enumeration listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.clusterers.RandomizableClustererpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-N <num> number of clusters. (default 2).
-P Initialize using the k-means++ method.
-V Display std. deviations for centroids.
-M Replace missing values with mean/mode.
-A <classname and options> Distance function to use. (default: weka.core.EuclideanDistance)
-I <num> Maximum number of iterations.
-O Preserve order of instances.
-fast Enables faster distance calculations, using cut-off values. Disables the calculation/output of squared errors/distances.
-S <num> Random number seed. (default 10)
setOptions in interface weka.core.OptionHandlersetOptions in class weka.clusterers.RandomizableClustereroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.clusterers.RandomizableClustererpublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.clusterers.AbstractClustererpublic static void main(java.lang.String[] args)
args - use -h to list all parameters