Skip navigation links
B C D G I L M N P R S T W 

B

buildClusterer(Instances) - Method in class weka.clusterers.CascadeSimpleKMeans
 

C

CascadeSimpleKMeans - Class in weka.clusterers
cascade simple k means, selects the best k according to calinski-harabasz criterion analogous to: http://cc.oulu.fi/~jarioksa/softhelp/vegan/html/cascadeKM.html see Calinski, T.
CascadeSimpleKMeans() - Constructor for class weka.clusterers.CascadeSimpleKMeans
 
clusterInstance(Instance) - Method in class weka.clusterers.CascadeSimpleKMeans
 

D

distanceFunctionTipText() - Method in class weka.clusterers.CascadeSimpleKMeans
 
distributionForInstance(Instance) - Method in class weka.clusterers.CascadeSimpleKMeans
 

G

getCapabilities() - Method in class weka.clusterers.CascadeSimpleKMeans
 
getDistanceFunction() - Method in class weka.clusterers.CascadeSimpleKMeans
 
getInitializeUsingKMeansPlusPlusMethod() - Method in class weka.clusterers.CascadeSimpleKMeans
Get whether to initialize using the probabilistic farthest first like method of the k-means++ algorithm (rather than the standard random selection of initial cluster centers).
getMaxIterations() - Method in class weka.clusterers.CascadeSimpleKMeans
 
getMaxNumClusters() - Method in class weka.clusterers.CascadeSimpleKMeans
 
getMinNumClusters() - Method in class weka.clusterers.CascadeSimpleKMeans
 
getOptions() - Method in class weka.clusterers.CascadeSimpleKMeans
Gets the current settings of SimpleKMeans.
getRestarts() - Method in class weka.clusterers.CascadeSimpleKMeans
 
getRevision() - Method in class weka.clusterers.CascadeSimpleKMeans
Returns the revision string.
getTechnicalInformation() - Method in class weka.clusterers.CascadeSimpleKMeans
 
globalInfo() - Method in class weka.clusterers.CascadeSimpleKMeans
Returns a string describing this clusterer.

I

initializeUsingKMeansPlusPlusMethodTipText() - Method in class weka.clusterers.CascadeSimpleKMeans
Returns the tip text for this property.
isManuallySelectNumClusters() - Method in class weka.clusterers.CascadeSimpleKMeans
 
isPrintDebug() - Method in class weka.clusterers.CascadeSimpleKMeans
 

L

listOptions() - Method in class weka.clusterers.CascadeSimpleKMeans
Returns an enumeration describing the available options.

M

main(String[]) - Static method in class weka.clusterers.CascadeSimpleKMeans
Main method for executing this class.
manuallySelectNumClustersTipText() - Method in class weka.clusterers.CascadeSimpleKMeans
 
maxIterationsTipText() - Method in class weka.clusterers.CascadeSimpleKMeans
 
maxNumClustersTipText() - Method in class weka.clusterers.CascadeSimpleKMeans
 
minNumClustersTipText() - Method in class weka.clusterers.CascadeSimpleKMeans
 

N

numberOfClusters() - Method in class weka.clusterers.CascadeSimpleKMeans
 

P

printDebugTipText() - Method in class weka.clusterers.CascadeSimpleKMeans
 

R

restartsTipText() - Method in class weka.clusterers.CascadeSimpleKMeans
 

S

setDistanceFunction(DistanceFunction) - Method in class weka.clusterers.CascadeSimpleKMeans
 
setInitializeUsingKMeansPlusPlusMethod(boolean) - Method in class weka.clusterers.CascadeSimpleKMeans
Set whether to initialize using the probabilistic farthest first like method of the k-means++ algorithm (rather than the standard random selection of initial cluster centers).
setManuallySelectNumClusters(boolean) - Method in class weka.clusterers.CascadeSimpleKMeans
 
setMaxIterations(int) - Method in class weka.clusterers.CascadeSimpleKMeans
 
setMaxNumClusters(int) - Method in class weka.clusterers.CascadeSimpleKMeans
 
setMinNumClusters(int) - Method in class weka.clusterers.CascadeSimpleKMeans
 
setOptions(String[]) - Method in class weka.clusterers.CascadeSimpleKMeans
Parses a given list of options.
setPrintDebug(boolean) - Method in class weka.clusterers.CascadeSimpleKMeans
 
setRestarts(int) - Method in class weka.clusterers.CascadeSimpleKMeans
 

T

toString() - Method in class weka.clusterers.CascadeSimpleKMeans
 

W

weka.clusterers - package weka.clusterers
 
B C D G I L M N P R S T W 
Skip navigation links