public class AODE
extends weka.classifiers.AbstractClassifier
implements weka.core.OptionHandler, weka.core.WeightedInstancesHandler, weka.classifiers.UpdateableClassifier, weka.core.TechnicalInformationHandler
@article{Webb2005,
author = {G. Webb and J. Boughton and Z. Wang},
journal = {Machine Learning},
number = {1},
pages = {5-24},
title = {Not So Naive Bayes: Aggregating One-Dependence Estimators},
volume = {58},
year = {2005}
}
Valid options are:
-D Output debugging information
-F <int> Impose a frequency limit for superParents (default is 1)
-M Use m-estimate instead of laplace correction
-W <int> Specify a weight to use with m-estimate (default is 1)
| Constructor and Description |
|---|
AODE() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(weka.core.Instances instances)
Generates the classifier.
|
double[] |
distributionForInstance(weka.core.Instance instance)
Calculates the class membership probabilities for the given test
instance.
|
java.lang.String |
frequencyLimitTipText()
Returns the tip text for this property
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
int |
getFrequencyLimit()
Gets the frequency limit.
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
boolean |
getUseMEstimates()
Gets if m-estimaces is being used.
|
int |
getWeight()
Gets the weight used in m-estimate
|
java.lang.String |
globalInfo()
Returns a string describing this classifier
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
double |
NBconditionalProb(weka.core.Instance instance,
int classVal)
Calculates the probability of the specified class for the given test
instance, using naive Bayes.
|
void |
setFrequencyLimit(int f)
Sets the frequency limit
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setUseMEstimates(boolean value)
Sets if m-estimates is to be used.
|
void |
setWeight(int w)
Sets the weight for m-estimate
|
java.lang.String |
toString()
Returns a description of the classifier.
|
void |
updateClassifier(weka.core.Instance instance)
Updates the classifier with the given instance.
|
java.lang.String |
useMEstimatesTipText()
Returns the tip text for this property
|
java.lang.String |
weightTipText()
Returns the tip text for this property
|
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacespublic java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.AbstractClassifierpublic void buildClassifier(weka.core.Instances instances)
throws java.lang.Exception
buildClassifier in interface weka.classifiers.Classifierinstances - set of instances serving as training datajava.lang.Exception - if the classifier has not been generated
successfullypublic void updateClassifier(weka.core.Instance instance)
updateClassifier in interface weka.classifiers.UpdateableClassifierinstance - the new training instance to include in the modelpublic double[] distributionForInstance(weka.core.Instance instance)
throws java.lang.Exception
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifierinstance - the instance to be classifiedjava.lang.Exception - if there is a problem generating the predictionpublic double NBconditionalProb(weka.core.Instance instance,
int classVal)
instance - the instance to be classifiedclassVal - the class for which to calculate the probabilitypublic java.util.Enumeration listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.AbstractClassifierpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-D Output debugging information
-F <int> Impose a frequency limit for superParents (default is 1)
-M Use m-estimate instead of laplace correction
-W <int> Specify a weight to use with m-estimate (default is 1)
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.AbstractClassifieroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.AbstractClassifierpublic java.lang.String weightTipText()
public void setWeight(int w)
w - the weightpublic int getWeight()
public java.lang.String useMEstimatesTipText()
public boolean getUseMEstimates()
public void setUseMEstimates(boolean value)
value - Value to assign to m_MEstimates.public java.lang.String frequencyLimitTipText()
public void setFrequencyLimit(int f)
f - the frequency limitpublic int getFrequencyLimit()
public java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.classifiers.AbstractClassifierpublic static void main(java.lang.String[] argv)
argv - the options