public class RBFNetwork
extends weka.classifiers.AbstractClassifier
implements weka.core.OptionHandler, weka.core.WeightedInstancesHandler
-B <number> Set the number of clusters (basis functions) to generate. (default = 2).
-S <seed> Set the random seed to be used by K-means. (default = 1).
-R <ridge> Set the ridge value for the logistic or linear regression.
-M <number> Set the maximum number of iterations for the logistic regression. (default -1, until convergence).
-W <number> Set the minimum standard deviation for the clusters. (default 0.1).
Constructor and Description |
---|
RBFNetwork() |
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(weka.core.Instances instances)
Builds the classifier
|
java.lang.String |
clusteringSeedTipText()
Returns the tip text for this property
|
double[] |
distributionForInstance(weka.core.Instance instance)
Computes the distribution for a given instance
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier, i.e., and "or" of Logistic
and LinearRegression.
|
int |
getClusteringSeed()
Get the random seed used by K-means.
|
int |
getMaxIts()
Get the value of MaxIts.
|
double |
getMinStdDev()
Get the MinStdDev value.
|
int |
getNumClusters()
Return the number of clusters to generate.
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
double |
getRidge()
Gets the ridge value.
|
java.lang.String |
globalInfo()
Returns a string describing this classifier
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
maxItsTipText()
Returns the tip text for this property
|
java.lang.String |
minStdDevTipText()
Returns the tip text for this property
|
java.lang.String |
numClustersTipText()
Returns the tip text for this property
|
java.lang.String |
ridgeTipText()
Returns the tip text for this property
|
void |
setClusteringSeed(int seed)
Set the random seed to be passed on to K-means.
|
void |
setMaxIts(int newMaxIts)
Set the value of MaxIts.
|
void |
setMinStdDev(double newMinStdDev)
Set the MinStdDev value.
|
void |
setNumClusters(int numClusters)
Set the number of clusters for K-means to generate.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setRidge(double ridge)
Sets the ridge value for logistic or linear regression.
|
java.lang.String |
toString()
Returns a description of this classifier as a String
|
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
public java.lang.String globalInfo()
public weka.core.Capabilities getCapabilities()
getCapabilities
in interface weka.classifiers.Classifier
getCapabilities
in interface weka.core.CapabilitiesHandler
getCapabilities
in class weka.classifiers.AbstractClassifier
Logistic
,
LinearRegression
public void buildClassifier(weka.core.Instances instances) throws java.lang.Exception
buildClassifier
in interface weka.classifiers.Classifier
instances
- the training datajava.lang.Exception
- if the classifier could not be built successfullypublic double[] distributionForInstance(weka.core.Instance instance) throws java.lang.Exception
distributionForInstance
in interface weka.classifiers.Classifier
distributionForInstance
in class weka.classifiers.AbstractClassifier
instance
- the instance for which distribution is computedjava.lang.Exception
- if the distribution can't be computed successfullypublic java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String maxItsTipText()
public int getMaxIts()
public void setMaxIts(int newMaxIts)
newMaxIts
- Value to assign to MaxIts.public java.lang.String ridgeTipText()
public void setRidge(double ridge)
ridge
- the ridgepublic double getRidge()
public java.lang.String numClustersTipText()
public void setNumClusters(int numClusters)
numClusters
- the number of clusters to generate.public int getNumClusters()
public java.lang.String clusteringSeedTipText()
public void setClusteringSeed(int seed)
seed
- a seed value.public int getClusteringSeed()
public java.lang.String minStdDevTipText()
public double getMinStdDev()
public void setMinStdDev(double newMinStdDev)
newMinStdDev
- The new MinStdDev value.public java.util.Enumeration<weka.core.Option> listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.classifiers.AbstractClassifier
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-B <number> Set the number of clusters (basis functions) to generate. (default = 2).
-S <seed> Set the random seed to be used by K-means. (default = 1).
-R <ridge> Set the ridge value for the logistic or linear regression.
-M <number> Set the maximum number of iterations for the logistic regression. (default -1, until convergence).
-W <number> Set the minimum standard deviation for the clusters. (default 0.1).
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.classifiers.AbstractClassifier
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.classifiers.AbstractClassifier
public java.lang.String getRevision()
getRevision
in interface weka.core.RevisionHandler
getRevision
in class weka.classifiers.AbstractClassifier
public static void main(java.lang.String[] argv)
argv
- should contain the command line arguments to the scheme (see
Evaluation)