Skip navigation links
B C D G L M N P R S T U W 

B

buildClassifier(Instances) - Method in class weka.classifiers.functions.RBFModel
Builds the RBF network regressor based on the given dataset.
buildClassifier(Instances) - Method in class weka.classifiers.functions.RBFNetwork
Builds the classifier

C

clusteringSeedTipText() - Method in class weka.classifiers.functions.RBFNetwork
Returns the tip text for this property

D

distributionForInstance(Instance) - Method in class weka.classifiers.functions.RBFModel
Calculates the output of the network after the instance has been piped through the fliters to replace missing values, etc.
distributionForInstance(Instance) - Method in class weka.classifiers.functions.RBFNetwork
Computes the distribution for a given instance

G

getCapabilities() - Method in class weka.classifiers.functions.RBFClassifier
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.functions.RBFModel
Returns default capabilities of the classifier.
getCapabilities() - Method in class weka.classifiers.functions.RBFNetwork
Returns default capabilities of the classifier, i.e., and "or" of Logistic and LinearRegression.
getCapabilities() - Method in class weka.classifiers.functions.RBFRegressor
Returns default capabilities of the classifier.
getClusteringSeed() - Method in class weka.classifiers.functions.RBFNetwork
Get the random seed used by K-means.
getMaxIts() - Method in class weka.classifiers.functions.RBFNetwork
Get the value of MaxIts.
getMinStdDev() - Method in class weka.classifiers.functions.RBFNetwork
Get the MinStdDev value.
getNumClusters() - Method in class weka.classifiers.functions.RBFNetwork
Return the number of clusters to generate.
getNumFunctions() - Method in class weka.classifiers.functions.RBFModel
Gets the number of functions.
getNumThreads() - Method in class weka.classifiers.functions.RBFModel
Gets the number of threads.
getOptions() - Method in class weka.classifiers.functions.RBFModel
Gets the current settings of the Classifier.
getOptions() - Method in class weka.classifiers.functions.RBFNetwork
Gets the current settings of the classifier.
getPoolSize() - Method in class weka.classifiers.functions.RBFModel
Gets the number of threads.
getRevision() - Method in class weka.classifiers.functions.RBFNetwork
Returns the revision string.
getRidge() - Method in class weka.classifiers.functions.RBFModel
Gets the value of the ridge parameter.
getRidge() - Method in class weka.classifiers.functions.RBFNetwork
Gets the ridge value.
getScaleOptimizationOption() - Method in class weka.classifiers.functions.RBFModel
Gets the scale optimisation method to use.
getTechnicalInformation() - Method in class weka.classifiers.functions.RBFModel
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getTolerance() - Method in class weka.classifiers.functions.RBFModel
Gets the tolerance parameter for the delta values.
getUseAttributeWeights() - Method in class weka.classifiers.functions.RBFModel
Gets whether to use attribute weights
getUseCGD() - Method in class weka.classifiers.functions.RBFModel
Gets whether to use CGD.
getUseNormalizedBasisFunctions() - Method in class weka.classifiers.functions.RBFModel
Gets whether to use normalized basis functions.
globalInfo() - Method in class weka.classifiers.functions.RBFModel
This will return a string describing the classifier.
globalInfo() - Method in class weka.classifiers.functions.RBFNetwork
Returns a string describing this classifier

L

listOptions() - Method in class weka.classifiers.functions.RBFModel
Returns an enumeration describing the available options.
listOptions() - Method in class weka.classifiers.functions.RBFNetwork
Returns an enumeration describing the available options

M

main(String[]) - Static method in class weka.classifiers.functions.RBFClassifier
Main method to run the code from the command-line using the standard WEKA options.
main(String[]) - Static method in class weka.classifiers.functions.RBFNetwork
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.functions.RBFRegressor
Main method to run the code from the command-line using the standard WEKA options.
maxItsTipText() - Method in class weka.classifiers.functions.RBFNetwork
Returns the tip text for this property
minStdDevTipText() - Method in class weka.classifiers.functions.RBFNetwork
Returns the tip text for this property

N

numClustersTipText() - Method in class weka.classifiers.functions.RBFNetwork
Returns the tip text for this property
numFunctionsTipText() - Method in class weka.classifiers.functions.RBFModel
 
numThreadsTipText() - Method in class weka.classifiers.functions.RBFModel
 

P

poolSizeTipText() - Method in class weka.classifiers.functions.RBFModel
 

R

RBFClassifier - Class in weka.classifiers.functions
Class implementing radial basis function networks, trained in a fully supervised manner using WEKA's Optimization class by minimizing squared error with the BFGS method.
RBFClassifier() - Constructor for class weka.classifiers.functions.RBFClassifier
 
RBFModel - Class in weka.classifiers.functions
Abstract super class that can be extended by sub classes that learn RBF models.
RBFModel() - Constructor for class weka.classifiers.functions.RBFModel
 
RBFNetwork - Class in weka.classifiers.functions
Class that implements a normalized Gaussian radial basisbasis function network.
It uses the k-means clustering algorithm to provide the basis functions and learns either a logistic regression (discrete class problems) or linear regression (numeric class problems) on top of that.
RBFNetwork() - Constructor for class weka.classifiers.functions.RBFNetwork
 
RBFRegressor - Class in weka.classifiers.functions
Class implementing radial basis function networks, trained in a fully supervised manner using WEKA's Optimization class by minimizing squared error with the BFGS method.
RBFRegressor() - Constructor for class weka.classifiers.functions.RBFRegressor
 
ridgeTipText() - Method in class weka.classifiers.functions.RBFModel
 
ridgeTipText() - Method in class weka.classifiers.functions.RBFNetwork
Returns the tip text for this property

S

scaleOptimizationOptionTipText() - Method in class weka.classifiers.functions.RBFModel
 
setClusteringSeed(int) - Method in class weka.classifiers.functions.RBFNetwork
Set the random seed to be passed on to K-means.
setMaxIts(int) - Method in class weka.classifiers.functions.RBFNetwork
Set the value of MaxIts.
setMinStdDev(double) - Method in class weka.classifiers.functions.RBFNetwork
Set the MinStdDev value.
setNumClusters(int) - Method in class weka.classifiers.functions.RBFNetwork
Set the number of clusters for K-means to generate.
setNumFunctions(int) - Method in class weka.classifiers.functions.RBFModel
Sets the number of functions.
setNumThreads(int) - Method in class weka.classifiers.functions.RBFModel
Sets the number of threads
setOptions(String[]) - Method in class weka.classifiers.functions.RBFModel
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.functions.RBFNetwork
Parses a given list of options.
setPoolSize(int) - Method in class weka.classifiers.functions.RBFModel
Sets the number of threads
setRidge(double) - Method in class weka.classifiers.functions.RBFModel
Sets the value of the ridge parameter.
setRidge(double) - Method in class weka.classifiers.functions.RBFNetwork
Sets the ridge value for logistic or linear regression.
setScaleOptimizationOption(SelectedTag) - Method in class weka.classifiers.functions.RBFModel
Sets the scale optimization option to use.
setTolerance(double) - Method in class weka.classifiers.functions.RBFModel
Sets the tolerance parameter for the delta values.
setUseAttributeWeights(boolean) - Method in class weka.classifiers.functions.RBFModel
Sets whether to use attribute weights.
setUseCGD(boolean) - Method in class weka.classifiers.functions.RBFModel
Sets whether to use CGD.
setUseNormalizedBasisFunctions(boolean) - Method in class weka.classifiers.functions.RBFModel
Sets whether to use normalized basis functions.

T

TAGS_SCALE - Static variable in class weka.classifiers.functions.RBFModel
 
toleranceTipText() - Method in class weka.classifiers.functions.RBFModel
 
toString() - Method in class weka.classifiers.functions.RBFClassifier
Outputs the network as a string.
toString() - Method in class weka.classifiers.functions.RBFNetwork
Returns a description of this classifier as a String
toString() - Method in class weka.classifiers.functions.RBFRegressor
Outputs the network as a string.

U

USE_GLOBAL_SCALE - Static variable in class weka.classifiers.functions.RBFModel
Constants for scale optimization options
USE_SCALE_PER_UNIT - Static variable in class weka.classifiers.functions.RBFModel
 
USE_SCALE_PER_UNIT_AND_ATTRIBUTE - Static variable in class weka.classifiers.functions.RBFModel
 
useAttributeWeightsTipText() - Method in class weka.classifiers.functions.RBFModel
 
useCGDTipText() - Method in class weka.classifiers.functions.RBFModel
 
useNormalizedBasisFunctionsTipText() - Method in class weka.classifiers.functions.RBFModel
 

W

weka.classifiers.functions - package weka.classifiers.functions
 
B C D G L M N P R S T U W 
Skip navigation links