public class FTNode extends FTtree
Constructor and Description |
---|
FTNode(boolean errorOnProbabilities,
int numBoostingIterations,
int minNumInstances,
double weightTrimBeta,
boolean useAIC)
Constructor for Functional tree node.
|
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(Instances data)
Method for building a Functional tree (only called for the root node).
|
void |
buildTree(Instances data,
SimpleLinearRegression[][] higherRegressions,
double totalInstanceWeight,
double higherNumParameters)
Method for building the tree structure.
|
double[] |
distributionForInstance(Instance instance)
Returns the class probabilities for an instance given by the Functional Tree.
|
java.lang.String |
getRevision()
Returns the revision string.
|
double |
prune()
Method for prunning a tree using C4.5 pruning procedure.
|
assignIDs, assignLeafModelNumbers, cleanup, getConstError, getModelParameters, getNodes, getNodes, getNumInnerNodes, getNumLeaves, graph, hasModels, modelDistributionForInstance, modelsToString, numLeaves, numNodes, toString
getMaxIterations, getNumRegressions, getUseAIC, getUsedAttributes, getWeightTrimBeta, percentAttributesUsed, setHeuristicStop, setMaxIterations, setUseAIC, setWeightTrimBeta
classifyInstance, debugTipText, forName, getCapabilities, getDebug, getOptions, listOptions, makeCopies, makeCopy, setDebug, setOptions
public FTNode(boolean errorOnProbabilities, int numBoostingIterations, int minNumInstances, double weightTrimBeta, boolean useAIC)
errorOnProbabilities
- Use error on probabilities for stopping criterion of LogitBoost?numBoostingIterations
- sets the numBoostingIterations parameterminNumInstances
- minimum number of instances at which a node is considered for splittingpublic void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier
in class FTtree
data
- the data to train withjava.lang.Exception
- if something goes wrongpublic void buildTree(Instances data, SimpleLinearRegression[][] higherRegressions, double totalInstanceWeight, double higherNumParameters) throws java.lang.Exception
buildTree
in class FTtree
data
- the training data passed on to this nodehigherRegressions
- An array of regression functions produced by LogitBoost at higher
levels in the tree. They represent a logistic regression model that is refined locally
at this node.totalInstanceWeight
- the total number of training exampleshigherNumParameters
- effective number of parameters in the logistic regression model built
in parent nodesjava.lang.Exception
- if something goes wrongpublic double prune() throws java.lang.Exception
public double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance
in class FTtree
instance
- the instancejava.lang.Exception
- if distribution can't be computed successfullypublic java.lang.String getRevision()
getRevision
in interface RevisionHandler
getRevision
in class FTtree