public class VFI extends Classifier implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler
@inproceedings{Demiroz1997,
author = {G. Demiroz and A. Guvenir},
booktitle = {9th European Conference on Machine Learning},
pages = {85-92},
publisher = {Springer},
title = {Classification by voting feature intervals},
year = {1997}
}
Faster than NaiveBayes but slower than HyperPipes.
Confidence: 0.01 (two tailed)
Dataset (1) VFI '-B | (2) Hyper (3) Naive
------------------------------------
anneal.ORIG (10) 74.56 | 97.88 v 74.77
anneal (10) 71.83 | 97.88 v 86.51 v
audiology (10) 51.69 | 66.26 v 72.25 v
autos (10) 57.63 | 62.79 v 57.76
balance-scale (10) 68.72 | 46.08 * 90.5 v
breast-cancer (10) 67.25 | 69.84 v 73.12 v
wisconsin-breast-cancer (10) 95.72 | 88.31 * 96.05 v
horse-colic.ORIG (10) 66.13 | 70.41 v 66.12
horse-colic (10) 78.36 | 62.07 * 78.28
credit-rating (10) 85.17 | 44.58 * 77.84 *
german_credit (10) 70.81 | 69.89 * 74.98 v
pima_diabetes (10) 62.13 | 65.47 v 75.73 v
Glass (10) 56.82 | 50.19 * 47.43 *
cleveland-14-heart-diseas (10) 80.01 | 55.18 * 83.83 v
hungarian-14-heart-diseas (10) 82.8 | 65.55 * 84.37 v
heart-statlog (10) 79.37 | 55.56 * 84.37 v
hepatitis (10) 83.78 | 63.73 * 83.87
hypothyroid (10) 92.64 | 93.33 v 95.29 v
ionosphere (10) 94.16 | 35.9 * 82.6 *
iris (10) 96.2 | 91.47 * 95.27 *
kr-vs-kp (10) 88.22 | 54.1 * 87.84 *
labor (10) 86.73 | 87.67 93.93 v
lymphography (10) 78.48 | 58.18 * 83.24 v
mushroom (10) 99.85 | 99.77 * 95.77 *
primary-tumor (10) 29 | 24.78 * 49.35 v
segment (10) 77.42 | 75.15 * 80.1 v
sick (10) 65.92 | 93.85 v 92.71 v
sonar (10) 58.02 | 57.17 67.97 v
soybean (10) 86.81 | 86.12 * 92.9 v
splice (10) 88.61 | 41.97 * 95.41 v
vehicle (10) 52.94 | 32.77 * 44.8 *
vote (10) 91.5 | 61.38 * 90.19 *
vowel (10) 57.56 | 36.34 * 62.81 v
waveform (10) 56.33 | 46.11 * 80.02 v
zoo (10) 94.05 | 94.26 95.04 v
------------------------------------
(v| |*) | (9|3|23) (22|5|8)
Valid options are:
-C Don't weight voting intervals by confidence
-B <bias> Set exponential bias towards confident intervals (default = 0.6)
| Constructor and Description |
|---|
VFI() |
| Modifier and Type | Method and Description |
|---|---|
java.lang.String |
biasTipText()
Returns the tip text for this property
|
void |
buildClassifier(Instances instances)
Generates the classifier.
|
double[] |
distributionForInstance(Instance instance)
Classifies the given test instance.
|
double |
getBias()
Get the value of the bias parameter
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
java.lang.String[] |
getOptions()
Gets the current settings of VFI
|
java.lang.String |
getRevision()
Returns the revision string.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
boolean |
getWeightByConfidence()
Get whether feature intervals are being weighted by confidence
|
java.lang.String |
globalInfo()
Returns a string describing this search method
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] args)
Main method for testing this class.
|
void |
setBias(double b)
Set the value of the exponential bias towards more confident intervals
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setWeightByConfidence(boolean c)
Set weighting by confidence
|
java.lang.String |
toString()
Returns a description of this classifier.
|
java.lang.String |
weightByConfidenceTipText()
Returns the tip text for this property
|
classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, setDebugpublic java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic java.util.Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class Classifierpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-C Don't weight voting intervals by confidence
-B <bias> Set exponential bias towards confident intervals (default = 1.0)
setOptions in interface OptionHandlersetOptions in class Classifieroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String weightByConfidenceTipText()
public void setWeightByConfidence(boolean c)
c - true if feature intervals are to be weighted by confidencepublic boolean getWeightByConfidence()
public java.lang.String biasTipText()
public void setBias(double b)
b - the value of the bias parameterpublic double getBias()
public java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class Classifierpublic Capabilities getCapabilities()
getCapabilities in interface CapabilitiesHandlergetCapabilities in class ClassifierCapabilitiespublic void buildClassifier(Instances instances) throws java.lang.Exception
buildClassifier in class Classifierinstances - set of instances serving as training datajava.lang.Exception - if the classifier has not been generated successfullypublic java.lang.String toString()
toString in class java.lang.Objectpublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance in class Classifierinstance - the instance to be classifiedjava.lang.Exception - if the instance can't be classifiedpublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class Classifierpublic static void main(java.lang.String[] args)
args - should contain command line arguments for evaluation
(see Evaluation).