public class MIDD extends Classifier implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler
@phdthesis{Maron1998,
author = {Oded Maron},
school = {Massachusetts Institute of Technology},
title = {Learning from ambiguity},
year = {1998}
}
@article{Maron1998,
author = {O. Maron and T. Lozano-Perez},
journal = {Neural Information Processing Systems},
title = {A Framework for Multiple Instance Learning},
volume = {10},
year = {1998}
}
Valid options are:
-D Turn on debugging output.
-N <num> Whether to 0=normalize/1=standardize/2=neither. (default 1=standardize)
| Modifier and Type | Field and Description |
|---|---|
static int |
FILTER_NONE
No normalization/standardization
|
static int |
FILTER_NORMALIZE
Normalize training data
|
static int |
FILTER_STANDARDIZE
Standardize training data
|
static Tag[] |
TAGS_FILTER
The filter to apply to the training data
|
| Constructor and Description |
|---|
MIDD() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(Instances train)
Builds the classifier
|
double[] |
distributionForInstance(Instance exmp)
Computes the distribution for a given exemplar
|
java.lang.String |
filterTypeTipText()
Returns the tip text for this property
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
SelectedTag |
getFilterType()
Gets how the training data will be transformed.
|
Capabilities |
getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance classifier for the
relational data.
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing this filter
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
void |
setFilterType(SelectedTag newType)
Sets how the training data will be transformed.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
java.lang.String |
toString()
Gets a string describing the classifier.
|
classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, setDebugpublic static final int FILTER_NORMALIZE
public static final int FILTER_STANDARDIZE
public static final int FILTER_NONE
public static final Tag[] TAGS_FILTER
public java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic java.util.Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class Classifierpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-D Turn on debugging output.
-N <num> Whether to 0=normalize/1=standardize/2=neither. (default 1=standardize)
setOptions in interface OptionHandlersetOptions in class Classifieroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class Classifierpublic java.lang.String filterTypeTipText()
public SelectedTag getFilterType()
public void setFilterType(SelectedTag newType)
newType - the new filtering modepublic Capabilities getCapabilities()
getCapabilities in interface CapabilitiesHandlergetCapabilities in class ClassifierCapabilitiespublic Capabilities getMultiInstanceCapabilities()
getMultiInstanceCapabilities in interface MultiInstanceCapabilitiesHandlerCapabilitiespublic void buildClassifier(Instances train) throws java.lang.Exception
buildClassifier in class Classifiertrain - the training data to be used for generating the
boosted classifier.java.lang.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(Instance exmp) throws java.lang.Exception
distributionForInstance in class Classifierexmp - the exemplar for which distribution is computedjava.lang.Exception - if the distribution can't be computed successfullypublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class Classifierpublic static void main(java.lang.String[] argv)
argv - should contain the command line arguments to the
scheme (see Evaluation)