public class ND extends RandomizableSingleClassifierEnhancer implements TechnicalInformationHandler
@inproceedings{Dong2005,
author = {Lin Dong and Eibe Frank and Stefan Kramer},
booktitle = {PKDD},
pages = {84-95},
publisher = {Springer},
title = {Ensembles of Balanced Nested Dichotomies for Multi-class Problems},
year = {2005}
}
@inproceedings{Frank2004,
author = {Eibe Frank and Stefan Kramer},
booktitle = {Twenty-first International Conference on Machine Learning},
publisher = {ACM},
title = {Ensembles of nested dichotomies for multi-class problems},
year = {2004}
}
Valid options are:
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.J48)
Options specific to classifier weka.classifiers.trees.J48:
-U Use unpruned tree.
-C <pruning confidence> Set confidence threshold for pruning. (default 0.25)
-M <minimum number of instances> Set minimum number of instances per leaf. (default 2)
-R Use reduced error pruning.
-N <number of folds> Set number of folds for reduced error pruning. One fold is used as pruning set. (default 3)
-B Use binary splits only.
-S Don't perform subtree raising.
-L Do not clean up after the tree has been built.
-A Laplace smoothing for predicted probabilities.
-Q <seed> Seed for random data shuffling (default 1).
| Constructor and Description |
|---|
ND()
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(Instances data)
Builds the classifier.
|
void |
buildClassifierForNode(weka.classifiers.meta.nestedDichotomies.ND.NDTree node,
Instances data)
Builds the classifier for one node.
|
double[] |
distributionForInstance(Instance inst)
Predicts the class distribution for a given instance
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
java.lang.String |
globalInfo() |
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
void |
setHashtable(java.util.Hashtable table)
Set hashtable from END.
|
java.lang.String |
toString()
Outputs the classifier as a string.
|
getOptions, getSeed, listOptions, seedTipText, setOptions, setSeedclassifierTipText, getClassifier, setClassifierclassifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, setDebugpublic TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic void setHashtable(java.util.Hashtable table)
table - the hashtable to usepublic Capabilities getCapabilities()
getCapabilities in interface CapabilitiesHandlergetCapabilities in class SingleClassifierEnhancerCapabilitiespublic void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier in class Classifierdata - the data to train the classifier withjava.lang.Exception - if anything goes wrongpublic void buildClassifierForNode(weka.classifiers.meta.nestedDichotomies.ND.NDTree node,
Instances data)
throws java.lang.Exception
node - the node to build the classifier fordata - the data to work withjava.lang.Exception - if anything goes wrongpublic double[] distributionForInstance(Instance inst) throws java.lang.Exception
distributionForInstance in class Classifierinst - the (multi-class) instance to be classifiedjava.lang.Exception - if computing failspublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String globalInfo()
public java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class Classifierpublic static void main(java.lang.String[] argv)
argv - the options