public class RacedIncrementalLogitBoost extends RandomizableSingleClassifierEnhancer implements UpdateableClassifier, TechnicalInformationHandler
@inproceedings{Frank2002, author = {Eibe Frank and Geoffrey Holmes and Richard Kirkby and Mark Hall}, booktitle = {Proceedings of the 5th International Conferenceon Discovery Science}, pages = {153-164}, publisher = {Springer}, title = { Racing committees for large datasets}, year = {2002} }Valid options are:
-C <num> Minimum size of chunks. (default 500)
-M <num> Maximum size of chunks. (default 2000)
-V <num> Size of validation set. (default 1000)
-P <pruning type> Committee pruning to perform. 0=none, 1=log likelihood (default)
-Q Use resampling for boosting.
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.DecisionStump)
Options specific to classifier weka.classifiers.trees.DecisionStump:
-D If set, classifier is run in debug mode and may output additional info to the consoleOptions after -- are passed to the designated learner.
Modifier and Type | Field and Description |
---|---|
static int |
PRUNETYPE_LOGLIKELIHOOD
log likelihood pruning
|
static int |
PRUNETYPE_NONE
no pruning
|
static Tag[] |
TAGS_PRUNETYPE
The pruning types
|
Constructor and Description |
---|
RacedIncrementalLogitBoost()
Constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(Instances data)
Builds the classifier.
|
double[] |
distributionForInstance(Instance instance)
Computes class distribution of an instance using the best committee.
|
int |
getBestCommitteeChunkSize()
Get the best committee chunk size
|
double |
getBestCommitteeErrorEstimate()
Get the best committee's error on the validation data
|
double |
getBestCommitteeLLEstimate()
Get the best committee's log likelihood on the validation data
|
int |
getBestCommitteeSize()
Get the number of members in the best committee
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
int |
getMaxChunkSize()
Get the maximum chunk size
|
int |
getMinChunkSize()
Get the minimum chunk size
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
SelectedTag |
getPruningType()
Get the pruning type
|
java.lang.String |
getRevision()
Returns the revision string.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
boolean |
getUseResampling()
Get whether resampling is turned on
|
int |
getValidationChunkSize()
Get the validation chunk size
|
java.lang.String |
globalInfo() |
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] argv)
Main method for this class.
|
java.lang.String |
maxChunkSizeTipText() |
java.lang.String |
minChunkSizeTipText() |
java.lang.String |
pruningTypeTipText() |
void |
setClassifier(Classifier newClassifier)
Set the base learner.
|
void |
setMaxChunkSize(int chunkSize)
Set the maximum chunk size
|
void |
setMinChunkSize(int chunkSize)
Set the minimum chunk size
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setPruningType(SelectedTag pruneType)
Set the pruning type
|
void |
setUseResampling(boolean r)
Set resampling mode
|
void |
setValidationChunkSize(int chunkSize)
Set the validation chunk size
|
java.lang.String |
toString()
Returns description of the boosted classifier.
|
void |
updateClassifier(Instance instance)
Updates the classifier.
|
java.lang.String |
useResamplingTipText() |
java.lang.String |
validationChunkSizeTipText() |
getSeed, seedTipText, setSeed
classifierTipText, getClassifier
classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, setDebug
public static final int PRUNETYPE_NONE
public static final int PRUNETYPE_LOGLIKELIHOOD
public static final Tag[] TAGS_PRUNETYPE
public Capabilities getCapabilities()
getCapabilities
in interface CapabilitiesHandler
getCapabilities
in class SingleClassifierEnhancer
Capabilities
public void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier
in class Classifier
data
- the instances to train the classifier withjava.lang.Exception
- if something goes wrongpublic void updateClassifier(Instance instance) throws java.lang.Exception
updateClassifier
in interface UpdateableClassifier
instance
- the next instance in the stream of training datajava.lang.Exception
- if something goes wrongpublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance
in class Classifier
instance
- the instance to get the distribution forjava.lang.Exception
- if anything goes wrongpublic java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class RandomizableSingleClassifierEnhancer
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-C <num> Minimum size of chunks. (default 500)
-M <num> Maximum size of chunks. (default 2000)
-V <num> Size of validation set. (default 1000)
-P <pruning type> Committee pruning to perform. 0=none, 1=log likelihood (default)
-Q Use resampling for boosting.
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.DecisionStump)
Options specific to classifier weka.classifiers.trees.DecisionStump:
-D If set, classifier is run in debug mode and may output additional info to the console
setOptions
in interface OptionHandler
setOptions
in class RandomizableSingleClassifierEnhancer
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class RandomizableSingleClassifierEnhancer
public java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface TechnicalInformationHandler
public void setClassifier(Classifier newClassifier)
setClassifier
in class SingleClassifierEnhancer
newClassifier
- the classifier to use.java.lang.IllegalArgumentException
- if base classifier cannot handle numeric
classpublic java.lang.String minChunkSizeTipText()
public void setMinChunkSize(int chunkSize)
chunkSize
- the minimum chunk sizepublic int getMinChunkSize()
public java.lang.String maxChunkSizeTipText()
public void setMaxChunkSize(int chunkSize)
chunkSize
- the maximum chunk sizepublic int getMaxChunkSize()
public java.lang.String validationChunkSizeTipText()
public void setValidationChunkSize(int chunkSize)
chunkSize
- the validation chunk sizepublic int getValidationChunkSize()
public java.lang.String pruningTypeTipText()
public void setPruningType(SelectedTag pruneType)
pruneType
- the pruning typepublic SelectedTag getPruningType()
public java.lang.String useResamplingTipText()
public void setUseResampling(boolean r)
r
- true if resampling should be donepublic boolean getUseResampling()
public int getBestCommitteeChunkSize()
public int getBestCommitteeSize()
public double getBestCommitteeErrorEstimate()
public double getBestCommitteeLLEstimate()
public java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String getRevision()
getRevision
in interface RevisionHandler
getRevision
in class Classifier
public static void main(java.lang.String[] argv)
argv
- the commandline parameters