public class Dagging extends RandomizableSingleClassifierEnhancer implements TechnicalInformationHandler
@inproceedings{Ting1997, address = {San Francisco, CA}, author = {Ting, K. M. and Witten, I. H.}, booktitle = {Fourteenth international Conference on Machine Learning}, editor = {D. H. Fisher}, pages = {367-375}, publisher = {Morgan Kaufmann Publishers}, title = {Stacking Bagged and Dagged Models}, year = {1997} }Valid options are:
-F <folds> The number of folds for splitting the training set into smaller chunks for the base classifier. (default 10)
-verbose Whether to print some more information during building the classifier. (default is off)
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.functions.SMO)
Options specific to classifier weka.classifiers.functions.SMO:
-D If set, classifier is run in debug mode and may output additional info to the console
-no-checks Turns off all checks - use with caution! Turning them off assumes that data is purely numeric, doesn't contain any missing values, and has a nominal class. Turning them off also means that no header information will be stored if the machine is linear. Finally, it also assumes that no instance has a weight equal to 0. (default: checks on)
-C <double> The complexity constant C. (default 1)
-N Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)
-L <double> The tolerance parameter. (default 1.0e-3)
-P <double> The epsilon for round-off error. (default 1.0e-12)
-M Fit logistic models to SVM outputs.
-V <double> The number of folds for the internal cross-validation. (default -1, use training data)
-W <double> The random number seed. (default 1)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number), 0 for full cache and -1 to turn it off. (default: 250007)
-E <num> The Exponent to use. (default: 1.0)
-L Use lower-order terms. (default: no)Options after -- are passed to the designated classifier.
Vote
,
Serialized FormConstructor and Description |
---|
Dagging()
Constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(Instances data)
Bagging method.
|
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test
instance.
|
int |
getNumFolds()
Gets the number of folds to use for splitting the training set.
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
boolean |
getVerbose()
Gets the verbose state
|
java.lang.String |
globalInfo()
Returns a string describing classifier
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] args)
Main method for testing this class.
|
java.lang.String |
numFoldsTipText()
Returns the tip text for this property
|
void |
setNumFolds(int value)
Sets the number of folds to use for splitting the training set.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setVerbose(boolean value)
Set the verbose state.
|
java.lang.String |
toString()
Returns description of the classifier.
|
java.lang.String |
verboseTipText()
Returns the tip text for this property
|
getSeed, seedTipText, setSeed
classifierTipText, getCapabilities, getClassifier, setClassifier
classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, setDebug
public java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface TechnicalInformationHandler
public java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class RandomizableSingleClassifierEnhancer
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-F <folds> The number of folds for splitting the training set into smaller chunks for the base classifier. (default 10)
-verbose Whether to print some more information during building the classifier. (default is off)
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.functions.SMO)
Options specific to classifier weka.classifiers.functions.SMO:
-D If set, classifier is run in debug mode and may output additional info to the console
-no-checks Turns off all checks - use with caution! Turning them off assumes that data is purely numeric, doesn't contain any missing values, and has a nominal class. Turning them off also means that no header information will be stored if the machine is linear. Finally, it also assumes that no instance has a weight equal to 0. (default: checks on)
-C <double> The complexity constant C. (default 1)
-N Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)
-L <double> The tolerance parameter. (default 1.0e-3)
-P <double> The epsilon for round-off error. (default 1.0e-12)
-M Fit logistic models to SVM outputs.
-V <double> The number of folds for the internal cross-validation. (default -1, use training data)
-W <double> The random number seed. (default 1)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number), 0 for full cache and -1 to turn it off. (default: 250007)
-E <num> The Exponent to use. (default: 1.0)
-L Use lower-order terms. (default: no)Options after -- are passed to the designated classifier.
setOptions
in interface OptionHandler
setOptions
in class RandomizableSingleClassifierEnhancer
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class RandomizableSingleClassifierEnhancer
public int getNumFolds()
public void setNumFolds(int value)
value
- the new number of foldspublic java.lang.String numFoldsTipText()
public void setVerbose(boolean value)
value
- the verbose statepublic boolean getVerbose()
public java.lang.String verboseTipText()
public void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier
in class Classifier
data
- the training data to be used for generating the
bagged classifier.java.lang.Exception
- if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance
in class Classifier
instance
- the instance to be classifiedjava.lang.Exception
- if distribution can't be computed successfullypublic java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String getRevision()
getRevision
in interface RevisionHandler
getRevision
in class Classifier
public static void main(java.lang.String[] args)
args
- the options