public class Dagging extends RandomizableSingleClassifierEnhancer implements TechnicalInformationHandler
@inproceedings{Ting1997,
address = {San Francisco, CA},
author = {Ting, K. M. and Witten, I. H.},
booktitle = {Fourteenth international Conference on Machine Learning},
editor = {D. H. Fisher},
pages = {367-375},
publisher = {Morgan Kaufmann Publishers},
title = {Stacking Bagged and Dagged Models},
year = {1997}
}
Valid options are:
-F <folds> The number of folds for splitting the training set into smaller chunks for the base classifier. (default 10)
-verbose Whether to print some more information during building the classifier. (default is off)
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.functions.SMO)
Options specific to classifier weka.classifiers.functions.SMO:
-D If set, classifier is run in debug mode and may output additional info to the console
-no-checks Turns off all checks - use with caution! Turning them off assumes that data is purely numeric, doesn't contain any missing values, and has a nominal class. Turning them off also means that no header information will be stored if the machine is linear. Finally, it also assumes that no instance has a weight equal to 0. (default: checks on)
-C <double> The complexity constant C. (default 1)
-N Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)
-L <double> The tolerance parameter. (default 1.0e-3)
-P <double> The epsilon for round-off error. (default 1.0e-12)
-M Fit logistic models to SVM outputs.
-V <double> The number of folds for the internal cross-validation. (default -1, use training data)
-W <double> The random number seed. (default 1)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number), 0 for full cache and -1 to turn it off. (default: 250007)
-E <num> The Exponent to use. (default: 1.0)
-L Use lower-order terms. (default: no)Options after -- are passed to the designated classifier.
Vote,
Serialized Form| Constructor and Description |
|---|
Dagging()
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(Instances data)
Bagging method.
|
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test
instance.
|
int |
getNumFolds()
Gets the number of folds to use for splitting the training set.
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
boolean |
getVerbose()
Gets the verbose state
|
java.lang.String |
globalInfo()
Returns a string describing classifier
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] args)
Main method for testing this class.
|
java.lang.String |
numFoldsTipText()
Returns the tip text for this property
|
void |
setNumFolds(int value)
Sets the number of folds to use for splitting the training set.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setVerbose(boolean value)
Set the verbose state.
|
java.lang.String |
toString()
Returns description of the classifier.
|
java.lang.String |
verboseTipText()
Returns the tip text for this property
|
getSeed, seedTipText, setSeedclassifierTipText, getCapabilities, getClassifier, setClassifierclassifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, setDebugpublic java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic java.util.Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class RandomizableSingleClassifierEnhancerpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-F <folds> The number of folds for splitting the training set into smaller chunks for the base classifier. (default 10)
-verbose Whether to print some more information during building the classifier. (default is off)
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.functions.SMO)
Options specific to classifier weka.classifiers.functions.SMO:
-D If set, classifier is run in debug mode and may output additional info to the console
-no-checks Turns off all checks - use with caution! Turning them off assumes that data is purely numeric, doesn't contain any missing values, and has a nominal class. Turning them off also means that no header information will be stored if the machine is linear. Finally, it also assumes that no instance has a weight equal to 0. (default: checks on)
-C <double> The complexity constant C. (default 1)
-N Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)
-L <double> The tolerance parameter. (default 1.0e-3)
-P <double> The epsilon for round-off error. (default 1.0e-12)
-M Fit logistic models to SVM outputs.
-V <double> The number of folds for the internal cross-validation. (default -1, use training data)
-W <double> The random number seed. (default 1)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number), 0 for full cache and -1 to turn it off. (default: 250007)
-E <num> The Exponent to use. (default: 1.0)
-L Use lower-order terms. (default: no)Options after -- are passed to the designated classifier.
setOptions in interface OptionHandlersetOptions in class RandomizableSingleClassifierEnhanceroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class RandomizableSingleClassifierEnhancerpublic int getNumFolds()
public void setNumFolds(int value)
value - the new number of foldspublic java.lang.String numFoldsTipText()
public void setVerbose(boolean value)
value - the verbose statepublic boolean getVerbose()
public java.lang.String verboseTipText()
public void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier in class Classifierdata - the training data to be used for generating the
bagged classifier.java.lang.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance in class Classifierinstance - the instance to be classifiedjava.lang.Exception - if distribution can't be computed successfullypublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class Classifierpublic static void main(java.lang.String[] args)
args - the options