public class Bagging extends RandomizableIteratedSingleClassifierEnhancer implements WeightedInstancesHandler, AdditionalMeasureProducer, TechnicalInformationHandler
 @article{Breiman1996,
    author = {Leo Breiman},
    journal = {Machine Learning},
    number = {2},
    pages = {123-140},
    title = {Bagging predictors},
    volume = {24},
    year = {1996}
 }
 
 
 
 
  Valid options are:
 
 
 -P Size of each bag, as a percentage of the training set size. (default 100)
-O Calculate the out of bag error.
-S <num> Random number seed. (default 1)
-I <num> Number of iterations. (default 10)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.REPTree)
Options specific to classifier weka.classifiers.trees.REPTree:
-M <minimum number of instances> Set minimum number of instances per leaf (default 2).
-V <minimum variance for split> Set minimum numeric class variance proportion of train variance for split (default 1e-3).
-N <number of folds> Number of folds for reduced error pruning (default 3).
-S <seed> Seed for random data shuffling (default 1).
-P No pruning.
-L Maximum tree depth (default -1, no maximum)Options after -- are passed to the designated classifier.
| Constructor and Description | 
|---|
| Bagging()Constructor. | 
| Modifier and Type | Method and Description | 
|---|---|
| java.lang.String | bagSizePercentTipText()Returns the tip text for this property | 
| void | buildClassifier(Instances data)Bagging method. | 
| java.lang.String | calcOutOfBagTipText()Returns the tip text for this property | 
| double[] | distributionForInstance(Instance instance)Calculates the class membership probabilities for the given test instance. | 
| java.util.Enumeration | enumerateMeasures()Returns an enumeration of the additional measure names. | 
| int | getBagSizePercent()Gets the size of each bag, as a percentage of the training set size. | 
| boolean | getCalcOutOfBag()Get whether the out of bag error is calculated. | 
| double | getMeasure(java.lang.String additionalMeasureName)Returns the value of the named measure. | 
| java.lang.String[] | getOptions()Gets the current settings of the Classifier. | 
| java.lang.String | getRevision()Returns the revision string. | 
| TechnicalInformation | getTechnicalInformation()Returns an instance of a TechnicalInformation object, containing detailed
 information about the technical background of this class, e.g., paper
 reference or book this class is based on. | 
| java.lang.String | globalInfo()Returns a string describing classifier | 
| java.util.Enumeration | listOptions()Returns an enumeration describing the available options. | 
| static void | main(java.lang.String[] argv)Main method for testing this class. | 
| double | measureOutOfBagError()Gets the out of bag error that was calculated as the classifier was built. | 
| void | setBagSizePercent(int newBagSizePercent)Sets the size of each bag, as a percentage of the training set size. | 
| void | setCalcOutOfBag(boolean calcOutOfBag)Set whether the out of bag error is calculated. | 
| void | setOptions(java.lang.String[] options)Parses a given list of options. | 
| java.lang.String | toString()Returns description of the bagged classifier. | 
getSeed, seedTipText, setSeedgetNumIterations, numIterationsTipText, setNumIterationsclassifierTipText, getCapabilities, getClassifier, setClassifierclassifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, setDebugpublic java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic java.util.Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class RandomizableIteratedSingleClassifierEnhancerpublic void setOptions(java.lang.String[] options)
                throws java.lang.Exception
-P Size of each bag, as a percentage of the training set size. (default 100)
-O Calculate the out of bag error.
-S <num> Random number seed. (default 1)
-I <num> Number of iterations. (default 10)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.REPTree)
Options specific to classifier weka.classifiers.trees.REPTree:
-M <minimum number of instances> Set minimum number of instances per leaf (default 2).
-V <minimum variance for split> Set minimum numeric class variance proportion of train variance for split (default 1e-3).
-N <number of folds> Number of folds for reduced error pruning (default 3).
-S <seed> Seed for random data shuffling (default 1).
-P No pruning.
-L Maximum tree depth (default -1, no maximum)Options after -- are passed to the designated classifier.
setOptions in interface OptionHandlersetOptions in class RandomizableIteratedSingleClassifierEnhanceroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class RandomizableIteratedSingleClassifierEnhancerpublic java.lang.String bagSizePercentTipText()
public int getBagSizePercent()
public void setBagSizePercent(int newBagSizePercent)
newBagSizePercent - the bag size, as a percentage.public java.lang.String calcOutOfBagTipText()
public void setCalcOutOfBag(boolean calcOutOfBag)
calcOutOfBag - whether to calculate the out of bag errorpublic boolean getCalcOutOfBag()
public double measureOutOfBagError()
public java.util.Enumeration enumerateMeasures()
enumerateMeasures in interface AdditionalMeasureProducerpublic double getMeasure(java.lang.String additionalMeasureName)
getMeasure in interface AdditionalMeasureProduceradditionalMeasureName - the name of the measure to query for its valuejava.lang.IllegalArgumentException - if the named measure is not supportedpublic void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier in class IteratedSingleClassifierEnhancerdata - the training data to be used for generating the bagged
          classifier.java.lang.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance in class Classifierinstance - the instance to be classifiedjava.lang.Exception - if distribution can't be computed successfullypublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class Classifierpublic static void main(java.lang.String[] argv)
argv - the options