public class LBR extends Classifier implements TechnicalInformationHandler
@article{Zheng2000,
author = {Zijian Zheng and G. Webb},
journal = {Machine Learning},
number = {1},
pages = {53-84},
title = {Lazy Learning of Bayesian Rules},
volume = {4},
year = {2000}
}
Valid options are:
-D If set, classifier is run in debug mode and may output additional info to the console
| Modifier and Type | Class and Description |
|---|---|
class |
LBR.Indexes
Class for handling instances and the associated attributes.
|
| Constructor and Description |
|---|
LBR() |
| Modifier and Type | Method and Description |
|---|---|
double |
binomP(double r,
double n,
double p)
Significance test
binomp:
|
void |
buildClassifier(Instances instances)
For lazy learning, building classifier is only to prepare their inputs
until classification time.
|
double[] |
distributionForInstance(Instance testInstance)
Calculates the class membership probabilities
for the given test instance.
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
java.lang.String |
globalInfo() |
int |
leaveOneOut(LBR.Indexes instanceIndex,
int[][][] counts,
int[] priors,
boolean[] errorFlags)
Leave-one-out strategy.
|
double[] |
localDistributionForInstance(Instance instance,
LBR.Indexes instanceIndex)
Calculates the class membership probabilities.
|
void |
localNaiveBayes(LBR.Indexes instanceIndex)
Class for building and using a simple Naive Bayes classifier.
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
toString()
Returns a description of the classifier.
|
classifyInstance, debugTipText, forName, getDebug, getOptions, listOptions, makeCopies, makeCopy, setDebug, setOptionspublic java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic Capabilities getCapabilities()
getCapabilities in interface CapabilitiesHandlergetCapabilities in class ClassifierCapabilitiespublic void buildClassifier(Instances instances) throws java.lang.Exception
buildClassifier in class Classifierinstances - set of instances serving as training datajava.lang.Exception - if the preparation has not been generated.public double[] distributionForInstance(Instance testInstance) throws java.lang.Exception
distributionForInstance in class ClassifiertestInstance - the instance to be classifiedjava.lang.Exception - if distribution can't be computedpublic java.lang.String toString()
toString in class java.lang.Objectpublic int leaveOneOut(LBR.Indexes instanceIndex, int[][][] counts, int[] priors, boolean[] errorFlags) throws java.lang.Exception
instanceIndex - set of instances serving as training data.counts - serving as all the counts of training data.priors - serving as the number of instances in each class.errorFlags - for the errorsjava.lang.Exception - if something goes wrongpublic void localNaiveBayes(LBR.Indexes instanceIndex) throws java.lang.Exception
Richard Duda and Peter Hart (1973).Pattern Classification and Scene Analysis. Wiley, New York. This method only get m_Counts and m_Priors.
instanceIndex - set of instances serving as training datajava.lang.Exception - if m_Counts and m_Priors have not been
generated successfullypublic double[] localDistributionForInstance(Instance instance, LBR.Indexes instanceIndex) throws java.lang.Exception
instance - the instance to be classifiedinstanceIndex - java.lang.Exception - if distribution can't be computedpublic double binomP(double r,
double n,
double p)
throws java.lang.Exception
r - n - p - java.lang.Exception - if computation failspublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class Classifierpublic static void main(java.lang.String[] argv)
argv - the options