public class PaceRegression extends Classifier implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler
@phdthesis{Wang2000,
address = {Hamilton, New Zealand},
author = {Wang, Y},
school = {Department of Computer Science, University of Waikato},
title = {A new approach to fitting linear models in high dimensional spaces},
year = {2000}
}
@inproceedings{Wang2002,
address = {Sydney, Australia},
author = {Wang, Y. and Witten, I. H.},
booktitle = {Proceedings of the Nineteenth International Conference in Machine Learning},
pages = {650-657},
title = {Modeling for optimal probability prediction},
year = {2002}
}
Valid options are:
-D Produce debugging output. (default no debugging output)
-E <estimator> The estimator can be one of the following: eb -- Empirical Bayes estimator for noraml mixture (default) nested -- Optimal nested model selector for normal mixture subset -- Optimal subset selector for normal mixture pace2 -- PACE2 for Chi-square mixture pace4 -- PACE4 for Chi-square mixture pace6 -- PACE6 for Chi-square mixture ols -- Ordinary least squares estimator aic -- AIC estimator bic -- BIC estimator ric -- RIC estimator olsc -- Ordinary least squares subset selector with a threshold
-S <threshold value> Threshold value for the OLSC estimator
| Modifier and Type | Field and Description |
|---|---|
static Tag[] |
TAGS_ESTIMATOR
estimator types
|
| Constructor and Description |
|---|
PaceRegression() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(Instances data)
Builds a pace regression model for the given data.
|
boolean |
checkForMissing(Instance instance,
Instances model)
Checks if an instance has a missing value.
|
double |
classifyInstance(Instance instance)
Classifies the given instance using the linear regression function.
|
double[] |
coefficients()
Returns the coefficients for this linear model.
|
java.lang.String |
debugTipText()
Returns the tip text for this property
|
java.lang.String |
estimatorTipText()
Returns the tip text for this property
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
boolean |
getDebug()
Controls whether debugging output will be printed
|
SelectedTag |
getEstimator()
Gets the estimator
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
double |
getThreshold()
Gets the threshold for olsc estimator
|
java.lang.String |
globalInfo()
Returns a string describing this classifier
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] argv)
Generates a linear regression function predictor.
|
int |
numParameters()
Get the number of coefficients used in the model
|
void |
setDebug(boolean debug)
Controls whether debugging output will be printed
|
void |
setEstimator(SelectedTag estimator)
Sets the estimator.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setThreshold(double newThreshold)
Set threshold for the olsc estimator
|
java.lang.String |
thresholdTipText()
Returns the tip text for this property
|
java.lang.String |
toString()
Outputs the linear regression model as a string.
|
distributionForInstance, forName, makeCopies, makeCopypublic static final Tag[] TAGS_ESTIMATOR
public java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic Capabilities getCapabilities()
getCapabilities in interface CapabilitiesHandlergetCapabilities in class ClassifierCapabilitiespublic void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier in class Classifierdata - the training data to be used for generating the
linear regression functionjava.lang.Exception - if the classifier could not be built successfullypublic boolean checkForMissing(Instance instance, Instances model)
instance - the instancemodel - the datapublic double classifyInstance(Instance instance) throws java.lang.Exception
classifyInstance in class Classifierinstance - the test instancejava.lang.Exception - if classification can't be done successfullypublic java.lang.String toString()
toString in class java.lang.Objectpublic java.util.Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class Classifierpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-D Produce debugging output. (default no debugging output)
-E <estimator> The estimator can be one of the following: eb -- Empirical Bayes estimator for noraml mixture (default) nested -- Optimal nested model selector for normal mixture subset -- Optimal subset selector for normal mixture pace2 -- PACE2 for Chi-square mixture pace4 -- PACE4 for Chi-square mixture pace6 -- PACE6 for Chi-square mixture ols -- Ordinary least squares estimator aic -- AIC estimator bic -- BIC estimator ric -- RIC estimator olsc -- Ordinary least squares subset selector with a threshold
-S <threshold value> Threshold value for the OLSC estimator
setOptions in interface OptionHandlersetOptions in class Classifieroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic double[] coefficients()
public java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class Classifierpublic int numParameters()
public java.lang.String debugTipText()
debugTipText in class Classifierpublic void setDebug(boolean debug)
setDebug in class Classifierdebug - true if debugging output should be printedpublic boolean getDebug()
getDebug in class Classifierpublic java.lang.String estimatorTipText()
public SelectedTag getEstimator()
public void setEstimator(SelectedTag estimator)
estimator - the new estimatorpublic java.lang.String thresholdTipText()
public void setThreshold(double newThreshold)
newThreshold - the threshold for the olsc estimatorpublic double getThreshold()
public java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class Classifierpublic static void main(java.lang.String[] argv)
argv - the options