public class GaussianProcesses extends Classifier implements OptionHandler, IntervalEstimator, TechnicalInformationHandler
@misc{Mackay1998, address = {Dept. of Physics, Cambridge University, UK}, author = {David J.C. Mackay}, title = {Introduction to Gaussian Processes}, year = {1998}, PS = {http://wol.ra.phy.cam.ac.uk/mackay/gpB.ps.gz} }Valid options are:
-D If set, classifier is run in debug mode and may output additional info to the console
-L <double> Level of Gaussian Noise. (default: 1.0)
-N Whether to 0=normalize/1=standardize/2=neither. (default: 0=normalize)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.RBFKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number), 0 for full cache and -1 to turn it off. (default: 250007)
-G <num> The Gamma parameter. (default: 0.01)
Modifier and Type | Field and Description |
---|---|
static int |
FILTER_NONE
no filter
|
static int |
FILTER_NORMALIZE
normalizes the data
|
static int |
FILTER_STANDARDIZE
standardizes the data
|
static Tag[] |
TAGS_FILTER
The filter to apply to the training data
|
Constructor and Description |
---|
GaussianProcesses()
the default constructor
|
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(Instances insts)
Method for building the classifier.
|
double |
classifyInstance(Instance inst)
Classifies a given instance.
|
java.lang.String |
filterTypeTipText()
Returns the tip text for this property
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
SelectedTag |
getFilterType()
Gets how the training data will be transformed.
|
Kernel |
getKernel()
Gets the kernel to use.
|
double |
getNoise()
Get the value of noise.
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
double |
getStandardDeviation(Instance inst)
Gives the variance of the prediction at the given instance
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing classifier
|
java.lang.String |
kernelTipText()
Returns the tip text for this property
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
noiseTipText()
Returns the tip text for this property
|
double[][] |
predictInterval(Instance inst,
double confidenceLevel)
Predicts a confidence interval for the given instance and confidence level.
|
void |
setFilterType(SelectedTag newType)
Sets how the training data will be transformed.
|
void |
setKernel(Kernel value)
Sets the kernel to use.
|
void |
setNoise(double v)
Set the level of Gaussian Noise.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
java.lang.String |
toString()
Prints out the classifier.
|
debugTipText, distributionForInstance, forName, getDebug, makeCopies, makeCopy, setDebug
public static final int FILTER_NORMALIZE
public static final int FILTER_STANDARDIZE
public static final int FILTER_NONE
public static final Tag[] TAGS_FILTER
public java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface TechnicalInformationHandler
public Capabilities getCapabilities()
getCapabilities
in interface CapabilitiesHandler
getCapabilities
in class Classifier
Capabilities
public void buildClassifier(Instances insts) throws java.lang.Exception
buildClassifier
in class Classifier
insts
- the set of training instancesjava.lang.Exception
- if the classifier can't be built successfullypublic double classifyInstance(Instance inst) throws java.lang.Exception
classifyInstance
in class Classifier
inst
- the instance to be classifiedjava.lang.Exception
- if instance could not be classified
successfullypublic double[][] predictInterval(Instance inst, double confidenceLevel) throws java.lang.Exception
predictInterval
in interface IntervalEstimator
inst
- the instance to make the prediction forconfidenceLevel
- the percentage of cases the interval should coverjava.lang.Exception
- if interval could not be estimated
successfullypublic double getStandardDeviation(Instance inst) throws java.lang.Exception
inst
- the instance to get the variance forjava.lang.Exception
- if computation failspublic java.util.Enumeration listOptions()
listOptions
in interface OptionHandler
listOptions
in class Classifier
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-D If set, classifier is run in debug mode and may output additional info to the console
-L <double> Level of Gaussian Noise. (default: 1.0)
-N Whether to 0=normalize/1=standardize/2=neither. (default: 0=normalize)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.RBFKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number), 0 for full cache and -1 to turn it off. (default: 250007)
-G <num> The Gamma parameter. (default: 0.01)
setOptions
in interface OptionHandler
setOptions
in class Classifier
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class Classifier
public java.lang.String kernelTipText()
public Kernel getKernel()
public void setKernel(Kernel value)
value
- the new kernelpublic java.lang.String filterTypeTipText()
public SelectedTag getFilterType()
public void setFilterType(SelectedTag newType)
newType
- the new filtering modepublic java.lang.String noiseTipText()
public double getNoise()
public void setNoise(double v)
v
- Value to assign to noise.public java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String getRevision()
getRevision
in interface RevisionHandler
getRevision
in class Classifier
public static void main(java.lang.String[] argv)
argv
- the commandline parameters