public class TAN extends GlobalScoreSearchAlgorithm implements TechnicalInformationHandler
@article{Friedman1997,
author = {N. Friedman and D. Geiger and M. Goldszmidt},
journal = {Machine Learning},
number = {2-3},
pages = {131-163},
title = {Bayesian network classifiers},
volume = {29},
year = {1997}
}
Valid options are:
-mbc Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
-Q Use probabilistic or 0/1 scoring. (default probabilistic scoring)
TAGS_CV_TYPE| Constructor and Description |
|---|
TAN() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildStructure(BayesNet bayesNet,
Instances instances)
buildStructure determines the network structure/graph of the network
using the maximimum weight spanning tree algorithm of Chow and Liu
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
java.lang.String |
globalInfo()
This will return a string describing the classifier.
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
calcScore, calcScoreWithExtraParent, calcScoreWithMissingParent, calcScoreWithReversedParent, cumulativeCV, CVTypeTipText, getCVType, getMarkovBlanketClassifier, getUseProb, kFoldCV, leaveOneOutCV, markovBlanketClassifierTipText, setCVType, setMarkovBlanketClassifier, setUseProb, useProbTipTextinitAsNaiveBayesTipText, maxNrOfParentsTipText, toStringpublic TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic void buildStructure(BayesNet bayesNet, Instances instances) throws java.lang.Exception
buildStructure in class SearchAlgorithmbayesNet - instances - java.lang.Exception - if something goes wrongpublic java.util.Enumeration listOptions()
listOptions in interface OptionHandlerlistOptions in class GlobalScoreSearchAlgorithmpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-mbc Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
-Q Use probabilistic or 0/1 scoring. (default probabilistic scoring)
setOptions in interface OptionHandlersetOptions in class GlobalScoreSearchAlgorithmoptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class GlobalScoreSearchAlgorithmpublic java.lang.String globalInfo()
globalInfo in class GlobalScoreSearchAlgorithmpublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class GlobalScoreSearchAlgorithm