@KFStep(name="ClassifierPerformanceEvaluator", category="Evaluation", toolTipText="Evaluates batch classifiers", iconPath="weka/gui/knowledgeflow/icons/ClassifierPerformanceEvaluator.gif") public class ClassifierPerformanceEvaluator extends BaseStep
| Constructor and Description |
|---|
ClassifierPerformanceEvaluator()
Constructor
|
| Modifier and Type | Method and Description |
|---|---|
boolean |
getCollectPredictionsForVisAndAUC() |
java.lang.String |
getCostMatrixString()
Get the cost matrix to use as a string
|
java.lang.String |
getCustomEditorForStep()
Return the fully qualified name of a custom editor component (JComponent)
to use for editing the properties of the step.
|
boolean |
getErrorPlotPointSizeProportionalToMargin()
Get whether the size of plot data points will be proportional to the
prediction margin
|
boolean |
getEvaluateWithRespectToCosts()
Get whether to evaluate with respoect to costs
|
java.lang.String |
getEvaluationMetricsToOutput()
Get the evaluation metrics to output (as a comma-separated list).
|
java.util.List<java.lang.String> |
getIncomingConnectionTypes()
Get a list of incoming connection types that this step can accept.
|
java.util.List<java.lang.String> |
getOutgoingConnectionTypes()
Get a list of outgoing connection types that this step can produce.
|
boolean |
getOutputConfusionMatrix() |
boolean |
getOutputEntropyMetrics() |
boolean |
getOutputPerClassStats() |
void |
processIncoming(Data data)
Process an incoming data payload (if the step accepts incoming connections)
|
void |
setCollectPredictionsForVisAndAUC(boolean collectPredictionsForVisAndAUC) |
void |
setCostMatrixString(java.lang.String cms)
Set the cost matrix to use as a string
|
void |
setErrorPlotPointSizeProportionalToMargin(boolean e)
Set whether the size of plot data points will be proportional to the
prediction margin
|
void |
setEvaluateWithRespectToCosts(boolean useCosts)
Set whether to evaluate with respoect to costs
|
void |
setEvaluationMetricsToOutput(java.lang.String m)
Set the evaluation metrics to output (as a comma-separated list).
|
void |
setOutputConfusionMatrix(boolean outputConfusionMatrix) |
void |
setOutputEntropyMetrics(boolean outputEntropyMetrics) |
void |
setOutputPerClassStats(boolean perClassStats) |
void |
stepInit()
Initialize the step.
|
void |
stop()
Request that processing be stopped.
|
environmentSubstitute, getDefaultSettings, getInteractiveViewers, getInteractiveViewersImpls, getName, getStepManager, globalInfo, isResourceIntensive, isStopRequested, outputStructureForConnectionType, outputStructureForConnectionType, setName, setStepIsResourceIntensive, setStepManager, setStepMustRunSingleThreaded, start, stepMustRunSingleThreadedpublic ClassifierPerformanceEvaluator()
public void setOutputPerClassStats(boolean perClassStats)
@OptionMetadata(displayName="Output per-class stats", description="Output precision/recall and true/false positives for each class", displayOrder=1) public boolean getOutputPerClassStats()
@OptionMetadata(displayName="Output confusion matrix", description="Output the matrix containing class confusions", displayOrder=2) public void setOutputConfusionMatrix(boolean outputConfusionMatrix)
public boolean getOutputConfusionMatrix()
@OptionMetadata(displayName="Output entropy evaluation measures", description="Output entropy-based evaluation measures", displayOrder=3) public void setOutputEntropyMetrics(boolean outputEntropyMetrics)
public boolean getOutputEntropyMetrics()
@OptionMetadata(displayName="Collect test data and predictions for visualization", description="Collect data and predictions in order to output visualizableError and thresholdData data", displayOrder=4) public void setCollectPredictionsForVisAndAUC(boolean collectPredictionsForVisAndAUC)
public boolean getCollectPredictionsForVisAndAUC()
@OptionMetadata(displayName="Error plot point size proportional to margin", description="Set the point size proportional to the prediction margin for classification error plots") public boolean getErrorPlotPointSizeProportionalToMargin()
public void setErrorPlotPointSizeProportionalToMargin(boolean e)
e - true if plot data points will be rendered proportional to the size
of the prediction margin@ProgrammaticProperty public java.lang.String getEvaluationMetricsToOutput()
public void setEvaluationMetricsToOutput(java.lang.String m)
m - the evaluation metrics to output@ProgrammaticProperty public void setEvaluateWithRespectToCosts(boolean useCosts)
useCosts - true to use cost-sensitive evaluationpublic boolean getEvaluateWithRespectToCosts()
@ProgrammaticProperty public void setCostMatrixString(java.lang.String cms)
cms - the cost matrix to usepublic java.lang.String getCostMatrixString()
public java.util.List<java.lang.String> getIncomingConnectionTypes()
public java.util.List<java.lang.String> getOutgoingConnectionTypes()
public void stepInit()
throws WekaException
StepWekaException - if a problem occurs during initializationpublic void stop()
BaseStepisStopRequested() periodically to see if they should stop
processing.public void processIncoming(Data data) throws WekaException
processIncoming in interface BaseStepExtenderprocessIncoming in interface StepprocessIncoming in class BaseStepdata - the payload to processWekaException - if a problem occurspublic java.lang.String getCustomEditorForStep()
getCustomEditorForStep in interface StepgetCustomEditorForStep in class BaseStep