public class JRip extends AbstractClassifier implements AdditionalMeasureProducer, WeightedInstancesHandler, TechnicalInformationHandler
@inproceedings{Cohen1995,
author = {William W. Cohen},
booktitle = {Twelfth International Conference on Machine Learning},
pages = {115-123},
publisher = {Morgan Kaufmann},
title = {Fast Effective Rule Induction},
year = {1995}
}
Valid options are:
-F <number of folds> Set number of folds for REP One fold is used as pruning set. (default 3)
-N <min. weights> Set the minimal weights of instances within a split. (default 2.0)
-O <number of runs> Set the number of runs of optimizations. (Default: 2)
-D Set whether turn on the debug mode (Default: false)
-S <seed> The seed of randomization (Default: 1)
-E Whether NOT check the error rate>=0.5 in stopping criteria (default: check)
-P Whether NOT use pruning (default: use pruning)
| Modifier and Type | Class and Description |
|---|---|
class |
JRip.Antd
The single antecedent in the rule, which is composed of an attribute and
the corresponding value.
|
class |
JRip.NominalAntd
The antecedent with nominal attribute
|
class |
JRip.NumericAntd
The antecedent with numeric attribute
|
class |
JRip.RipperRule
This class implements a single rule that predicts specified class.
|
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULT| Constructor and Description |
|---|
JRip() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(Instances instances)
Builds Ripper in the order of class frequencies.
|
java.lang.String |
checkErrorRateTipText()
Returns the tip text for this property
|
java.lang.String |
debugTipText()
Returns the tip text for this property
|
double[] |
distributionForInstance(Instance datum)
Classify the test instance with the rule learner and provide the class
distributions
|
java.util.Enumeration<java.lang.String> |
enumerateMeasures()
Returns an enumeration of the additional measure names
|
java.lang.String |
foldsTipText()
Returns the tip text for this property
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
boolean |
getCheckErrorRate()
Gets whether to check for error rate is in stopping criterion
|
boolean |
getDebug()
Gets whether debug information is output to the console
|
int |
getFolds()
Gets the number of folds
|
double |
getMeasure(java.lang.String additionalMeasureName)
Returns the value of the named measure
|
double |
getMinNo()
Gets the minimum total weight of the instances in a rule
|
int |
getOptimizations()
Gets the the number of optimization runs
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
java.util.ArrayList<Rule> |
getRuleset()
Get the ruleset generated by Ripper
|
RuleStats |
getRuleStats(int pos)
Get the statistics of the ruleset in the given position
|
long |
getSeed()
Gets the current seed value to use in randomizing the data
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
boolean |
getUsePruning()
Gets whether pruning is performed
|
java.lang.String |
globalInfo()
Returns a string describing classifier
|
java.util.Enumeration<Option> |
listOptions()
Returns an enumeration describing the available options Valid options are:
|
static void |
main(java.lang.String[] args)
Main method.
|
java.lang.String |
minNoTipText()
Returns the tip text for this property
|
java.lang.String |
optimizationsTipText()
Returns the tip text for this property
|
java.lang.String |
seedTipText()
Returns the tip text for this property
|
void |
setCheckErrorRate(boolean d)
Sets whether to check for error rate is in stopping criterion
|
void |
setDebug(boolean d)
Sets whether debug information is output to the console
|
void |
setFolds(int fold)
Sets the number of folds to use
|
void |
setMinNo(double m)
Sets the minimum total weight of the instances in a rule
|
void |
setOptimizations(int run)
Sets the number of optimization runs
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setSeed(long s)
Sets the seed value to use in randomizing the data
|
void |
setUsePruning(boolean d)
Sets whether pruning is performed
|
java.lang.String |
toString()
Prints the all the rules of the rule learner.
|
java.lang.String |
usePruningTipText()
Returns the tip text for this property
|
batchSizeTipText, classifyInstance, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDoNotCheckCapabilities, setNumDecimalPlacesequals, getClass, hashCode, notify, notifyAll, wait, wait, waitmakeCopypublic java.lang.String globalInfo()
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlerpublic java.util.Enumeration<Option> listOptions()
-F number
The number of folds for reduced error pruning. One fold is used as the
pruning set. (Default: 3)
-N number
The minimal weights of instances within a split. (Default: 2)
-O number
Set the number of runs of optimizations. (Default: 2)
-D
Whether turn on the debug mode
-S number
The seed of randomization used in Ripper.(Default: 1)
-E
Whether NOT check the error rate >= 0.5 in stopping criteria. (default:
check)
-P
Whether NOT use pruning. (default: use pruning)
listOptions in interface OptionHandlerlistOptions in class AbstractClassifierpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-F <number of folds> Set number of folds for REP One fold is used as pruning set. (default 3)
-N <min. weights> Set the minimal weights of instances within a split. (default 2.0)
-O <number of runs> Set the number of runs of optimizations. (Default: 2)
-D Set whether turn on the debug mode (Default: false)
-S <seed> The seed of randomization (Default: 1)
-E Whether NOT check the error rate>=0.5 in stopping criteria (default: check)
-P Whether NOT use pruning (default: use pruning)
setOptions in interface OptionHandlersetOptions in class AbstractClassifieroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class AbstractClassifierpublic java.util.Enumeration<java.lang.String> enumerateMeasures()
enumerateMeasures in interface AdditionalMeasureProducerpublic double getMeasure(java.lang.String additionalMeasureName)
getMeasure in interface AdditionalMeasureProduceradditionalMeasureName - the name of the measure to query for its valuejava.lang.IllegalArgumentException - if the named measure is not supportedpublic java.lang.String foldsTipText()
public void setFolds(int fold)
fold - the number of foldspublic int getFolds()
public java.lang.String minNoTipText()
public void setMinNo(double m)
m - the minimum total weight of the instances in a rulepublic double getMinNo()
public java.lang.String seedTipText()
public void setSeed(long s)
s - the new seed valuepublic long getSeed()
public java.lang.String optimizationsTipText()
public void setOptimizations(int run)
run - the number of optimization runspublic int getOptimizations()
public java.lang.String debugTipText()
debugTipText in class AbstractClassifierpublic void setDebug(boolean d)
setDebug in class AbstractClassifierd - whether debug information is output to the consolepublic boolean getDebug()
getDebug in class AbstractClassifierpublic java.lang.String checkErrorRateTipText()
public void setCheckErrorRate(boolean d)
d - whether to check for error rate is in stopping criterionpublic boolean getCheckErrorRate()
public java.lang.String usePruningTipText()
public void setUsePruning(boolean d)
d - Whether pruning is performedpublic boolean getUsePruning()
public java.util.ArrayList<Rule> getRuleset()
public RuleStats getRuleStats(int pos)
pos - the position of the stats, assuming correctpublic Capabilities getCapabilities()
getCapabilities in interface ClassifiergetCapabilities in interface CapabilitiesHandlergetCapabilities in class AbstractClassifierCapabilitiespublic void buildClassifier(Instances instances) throws java.lang.Exception
buildClassifier in interface Classifierinstances - the training datajava.lang.Exception - if classifier can't be built successfullypublic double[] distributionForInstance(Instance datum)
distributionForInstance in interface ClassifierdistributionForInstance in class AbstractClassifierdatum - the instance to be classifiedpublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class AbstractClassifierpublic static void main(java.lang.String[] args)
args - the options for the classifier