public class CostSensitiveClassifier extends RandomizableSingleClassifierEnhancer implements OptionHandler, Drawable, BatchPredictor, WeightedInstancesHandler
-M Minimize expected misclassification cost. Default is to reweight training instances according to costs per class
-C <cost file name> File name of a cost matrix to use. If this is not supplied, a cost matrix will be loaded on demand. The name of the on-demand file is the relation name of the training data plus ".cost", and the path to the on-demand file is specified with the -N option.
-N <directory> Name of a directory to search for cost files when loading costs on demand (default current directory).
-cost-matrix <matrix> The cost matrix in Matlab single line format.
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the consoleOptions after -- are passed to the designated classifier.
Modifier and Type | Field and Description |
---|---|
static int |
MATRIX_ON_DEMAND
load cost matrix on demand
|
static int |
MATRIX_SUPPLIED
use explicit cost matrix
|
static Tag[] |
TAGS_MATRIX_SOURCE
Specify possible sources of the cost matrix
|
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULT
BayesNet, Newick, NOT_DRAWABLE, TREE
Constructor and Description |
---|
CostSensitiveClassifier()
Default constructor.
|
Modifier and Type | Method and Description |
---|---|
java.lang.String |
batchSizeTipText()
Tool tip text for this property
|
void |
buildClassifier(Instances data)
Builds the model of the base learner.
|
java.lang.String |
costMatrixSourceTipText() |
java.lang.String |
costMatrixTipText() |
double[] |
distributionForInstance(Instance instance)
Returns class probabilities.
|
double[][] |
distributionsForInstances(Instances insts)
Batch scoring method.
|
java.lang.String |
getBatchSize()
Gets the preferred batch size from the base learner if it implements
BatchPredictor.
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
CostMatrix |
getCostMatrix()
Gets the misclassification cost matrix.
|
SelectedTag |
getCostMatrixSource()
Gets the source location method of the cost matrix.
|
boolean |
getMinimizeExpectedCost()
Gets the value of MinimizeExpectedCost.
|
java.io.File |
getOnDemandDirectory()
Returns the directory that will be searched for cost files when
loading on demand.
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
java.lang.String |
globalInfo() |
java.lang.String |
graph()
Returns graph describing the classifier (if possible).
|
int |
graphType()
Returns the type of graph this classifier
represents.
|
boolean |
implementsMoreEfficientBatchPrediction()
Returns true if the base classifier implements BatchPredictor and is able
to generate batch predictions efficiently
|
java.util.Enumeration<Option> |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
minimizeExpectedCostTipText() |
java.lang.String |
onDemandDirectoryTipText() |
void |
setBatchSize(java.lang.String size)
Set the batch size to use.
|
void |
setCostMatrix(CostMatrix newCostMatrix)
Sets the misclassification cost matrix.
|
void |
setCostMatrixSource(SelectedTag newMethod)
Sets the source location of the cost matrix.
|
void |
setMinimizeExpectedCost(boolean newMinimizeExpectedCost)
Set the value of MinimizeExpectedCost.
|
void |
setOnDemandDirectory(java.io.File newDir)
Sets the directory that will be searched for cost files when
loading on demand.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
java.lang.String |
toString()
Output a representation of this classifier
|
getSeed, seedTipText, setSeed
classifierTipText, getClassifier, postExecution, preExecution, setClassifier
classifyInstance, debugTipText, doNotCheckCapabilitiesTipText, forName, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
makeCopy
public static final int MATRIX_ON_DEMAND
public static final int MATRIX_SUPPLIED
public static final Tag[] TAGS_MATRIX_SOURCE
public java.util.Enumeration<Option> listOptions()
listOptions
in interface OptionHandler
listOptions
in class RandomizableSingleClassifierEnhancer
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-M Minimize expected misclassification cost. Default is to reweight training instances according to costs per class
-C <cost file name> File name of a cost matrix to use. If this is not supplied, a cost matrix will be loaded on demand. The name of the on-demand file is the relation name of the training data plus ".cost", and the path to the on-demand file is specified with the -N option.
-N <directory> Name of a directory to search for cost files when loading costs on demand (default current directory).
-cost-matrix <matrix> The cost matrix in Matlab single line format.
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
Options specific to classifier weka.classifiers.rules.ZeroR:
-D If set, classifier is run in debug mode and may output additional info to the consoleOptions after -- are passed to the designated classifier.
setOptions
in interface OptionHandler
setOptions
in class RandomizableSingleClassifierEnhancer
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class RandomizableSingleClassifierEnhancer
public java.lang.String globalInfo()
public java.lang.String costMatrixSourceTipText()
public SelectedTag getCostMatrixSource()
public void setCostMatrixSource(SelectedTag newMethod)
newMethod
- the cost matrix location method.public java.lang.String onDemandDirectoryTipText()
public java.io.File getOnDemandDirectory()
public void setOnDemandDirectory(java.io.File newDir)
newDir
- The cost file search directory.public java.lang.String minimizeExpectedCostTipText()
public boolean getMinimizeExpectedCost()
public void setMinimizeExpectedCost(boolean newMinimizeExpectedCost)
newMinimizeExpectedCost
- Value to assign to MinimizeExpectedCost.public java.lang.String costMatrixTipText()
public CostMatrix getCostMatrix()
public void setCostMatrix(CostMatrix newCostMatrix)
newCostMatrix
- the cost matrixpublic Capabilities getCapabilities()
getCapabilities
in interface Classifier
getCapabilities
in interface CapabilitiesHandler
getCapabilities
in class SingleClassifierEnhancer
Capabilities
public void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier
in interface Classifier
data
- the training datajava.lang.Exception
- if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance
in interface Classifier
distributionForInstance
in class AbstractClassifier
instance
- the instance to be classifiedjava.lang.Exception
- if instance could not be classified
successfullypublic double[][] distributionsForInstances(Instances insts) throws java.lang.Exception
distributionsForInstances
in interface BatchPredictor
distributionsForInstances
in class AbstractClassifier
insts
- the instances to get predictions forjava.lang.Exception
- if a problem occurspublic java.lang.String batchSizeTipText()
batchSizeTipText
in class AbstractClassifier
public void setBatchSize(java.lang.String size)
setBatchSize
in interface BatchPredictor
setBatchSize
in class AbstractClassifier
size
- the batch size to usepublic java.lang.String getBatchSize()
getBatchSize
in interface BatchPredictor
getBatchSize
in class AbstractClassifier
public boolean implementsMoreEfficientBatchPrediction()
implementsMoreEfficientBatchPrediction
in interface BatchPredictor
implementsMoreEfficientBatchPrediction
in class AbstractClassifier
public int graphType()
public java.lang.String graph() throws java.lang.Exception
public java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String getRevision()
getRevision
in interface RevisionHandler
getRevision
in class AbstractClassifier
public static void main(java.lang.String[] argv)
argv
- should contain the following arguments:
-t training file [-T test file] [-c class index]