public class TAN extends GlobalScoreSearchAlgorithm implements TechnicalInformationHandler
@article{Friedman1997, author = {N. Friedman and D. Geiger and M. Goldszmidt}, journal = {Machine Learning}, number = {2-3}, pages = {131-163}, title = {Bayesian network classifiers}, volume = {29}, year = {1997} }Valid options are:
-mbc Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
-Q Use probabilistic or 0/1 scoring. (default probabilistic scoring)
TAGS_CV_TYPE
Constructor and Description |
---|
TAN() |
Modifier and Type | Method and Description |
---|---|
void |
buildStructure(BayesNet bayesNet,
Instances instances)
buildStructure determines the network structure/graph of the network using
the maximimum weight spanning tree algorithm of Chow and Liu
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
java.lang.String |
globalInfo()
This will return a string describing the classifier.
|
java.util.Enumeration<Option> |
listOptions()
Returns an enumeration describing the available options.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
calcScore, calcScoreWithExtraParent, calcScoreWithMissingParent, calcScoreWithReversedParent, cumulativeCV, CVTypeTipText, getCVType, getMarkovBlanketClassifier, getUseProb, kFoldCV, leaveOneOutCV, markovBlanketClassifierTipText, setCVType, setMarkovBlanketClassifier, setUseProb, useProbTipText
initAsNaiveBayesTipText, maxNrOfParentsTipText, toString
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
makeCopy
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface TechnicalInformationHandler
public void buildStructure(BayesNet bayesNet, Instances instances) throws java.lang.Exception
buildStructure
in class SearchAlgorithm
bayesNet
- instances
- java.lang.Exception
- if something goes wrongpublic java.util.Enumeration<Option> listOptions()
listOptions
in interface OptionHandler
listOptions
in class GlobalScoreSearchAlgorithm
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-mbc Applies a Markov Blanket correction to the network structure, after a network structure is learned. This ensures that all nodes in the network are part of the Markov blanket of the classifier node.
-S [LOO-CV|k-Fold-CV|Cumulative-CV] Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
-Q Use probabilistic or 0/1 scoring. (default probabilistic scoring)
setOptions
in interface OptionHandler
setOptions
in class GlobalScoreSearchAlgorithm
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface OptionHandler
getOptions
in class GlobalScoreSearchAlgorithm
public java.lang.String globalInfo()
globalInfo
in class GlobalScoreSearchAlgorithm
public java.lang.String getRevision()
getRevision
in interface RevisionHandler
getRevision
in class GlobalScoreSearchAlgorithm