public class Dl4jMlpClassifier extends RandomizableClassifier implements BatchPredictor, CapabilitiesHandler
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULT
Constructor and Description |
---|
Dl4jMlpClassifier() |
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(Instances data)
The method used to train the classifier.
|
double[] |
distributionForInstance(Instance inst)
The method to use when making predictions for a test instance.
|
Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
AbstractDataSetIterator |
getDataSetIterator() |
org.deeplearning4j.nn.conf.layers.Layer[] |
getLayers() |
java.io.File |
getLogFile()
Get the log file
|
int |
getNumEpochs() |
org.deeplearning4j.nn.api.OptimizationAlgorithm |
getOptimizationAlgorithm() |
java.lang.String |
globalInfo() |
static void |
main(java.lang.String[] argv)
The main method for running this class.
|
void |
setDataSetIterator(AbstractDataSetIterator iterator) |
void |
setLayers(org.deeplearning4j.nn.conf.layers.Layer[] layers) |
void |
setLogFile(java.io.File logFile)
Set the log file
|
void |
setNumEpochs(int numEpochs) |
void |
setOptimizationAlgorithm(org.deeplearning4j.nn.api.OptimizationAlgorithm optimAlgorithm) |
java.lang.String |
toString()
Returns a string describing the model.
|
getOptions, getSeed, listOptions, seedTipText, setOptions, setSeed
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, getRevision, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
distributionsForInstances, getBatchSize, implementsMoreEfficientBatchPrediction, setBatchSize
public static void main(java.lang.String[] argv)
argv
- the command-line argumentspublic java.lang.String globalInfo()
public Capabilities getCapabilities()
getCapabilities
in interface Classifier
getCapabilities
in interface CapabilitiesHandler
getCapabilities
in class AbstractClassifier
public java.io.File getLogFile()
@OptionMetadata(displayName="log file", description="The name of the log file to write loss information to (default = no log file).", commandLineParamName="logFile", commandLineParamSynopsis="-logFile <string>", displayOrder=1) public void setLogFile(java.io.File logFile)
logFile
- the log filepublic org.deeplearning4j.nn.conf.layers.Layer[] getLayers()
@OptionMetadata(displayName="layer specification", description="The specification of the layers.", commandLineParamName="layers", commandLineParamSynopsis="-layers <string>", displayOrder=2) public void setLayers(org.deeplearning4j.nn.conf.layers.Layer[] layers)
public int getNumEpochs()
@OptionMetadata(description="The number of epochs to perform", displayName="number of epochs", commandLineParamName="numEpochs", commandLineParamSynopsis="-numEpochs <int>", displayOrder=4) public void setNumEpochs(int numEpochs)
@OptionMetadata(description="Optimization algorithm (LINE_GRADIENT_DESCENT, CONJUGATE_GRADIENT, HESSIAN_FREE, LBFGS, STOCHASTIC_GRADIENT_DESCENT)", displayName="optimization algorithm", commandLineParamName="algorithm", commandLineParamSynopsis="-algorithm <string>", displayOrder=5) public org.deeplearning4j.nn.api.OptimizationAlgorithm getOptimizationAlgorithm()
public void setOptimizationAlgorithm(org.deeplearning4j.nn.api.OptimizationAlgorithm optimAlgorithm)
@OptionMetadata(description="The dataset iterator to use", displayName="dataset iterator", commandLineParamName="iterator", commandLineParamSynopsis="-iterator <string>", displayOrder=6) public AbstractDataSetIterator getDataSetIterator()
public void setDataSetIterator(AbstractDataSetIterator iterator)
public void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier
in interface Classifier
data
- set of instances serving as training datajava.lang.Exception
- if something goes wrong in the training processpublic double[] distributionForInstance(Instance inst) throws java.lang.Exception
distributionForInstance
in interface Classifier
distributionForInstance
in class AbstractClassifier
inst
- the instance to get a prediction forjava.lang.Exception
- if something goes wrong at prediction timepublic java.lang.String toString()
toString
in class java.lang.Object