public class VFI
extends weka.classifiers.AbstractClassifier
implements weka.core.OptionHandler, weka.core.WeightedInstancesHandler, weka.core.TechnicalInformationHandler
@inproceedings{Demiroz1997, author = {G. Demiroz and A. Guvenir}, booktitle = {9th European Conference on Machine Learning}, pages = {85-92}, publisher = {Springer}, title = {Classification by voting feature intervals}, year = {1997} }Faster than NaiveBayes but slower than HyperPipes.
Confidence: 0.01 (two tailed) Dataset (1) VFI '-B | (2) Hyper (3) Naive ------------------------------------ anneal.ORIG (10) 74.56 | 97.88 v 74.77 anneal (10) 71.83 | 97.88 v 86.51 v audiology (10) 51.69 | 66.26 v 72.25 v autos (10) 57.63 | 62.79 v 57.76 balance-scale (10) 68.72 | 46.08 * 90.5 v breast-cancer (10) 67.25 | 69.84 v 73.12 v wisconsin-breast-cancer (10) 95.72 | 88.31 * 96.05 v horse-colic.ORIG (10) 66.13 | 70.41 v 66.12 horse-colic (10) 78.36 | 62.07 * 78.28 credit-rating (10) 85.17 | 44.58 * 77.84 * german_credit (10) 70.81 | 69.89 * 74.98 v pima_diabetes (10) 62.13 | 65.47 v 75.73 v Glass (10) 56.82 | 50.19 * 47.43 * cleveland-14-heart-diseas (10) 80.01 | 55.18 * 83.83 v hungarian-14-heart-diseas (10) 82.8 | 65.55 * 84.37 v heart-statlog (10) 79.37 | 55.56 * 84.37 v hepatitis (10) 83.78 | 63.73 * 83.87 hypothyroid (10) 92.64 | 93.33 v 95.29 v ionosphere (10) 94.16 | 35.9 * 82.6 * iris (10) 96.2 | 91.47 * 95.27 * kr-vs-kp (10) 88.22 | 54.1 * 87.84 * labor (10) 86.73 | 87.67 93.93 v lymphography (10) 78.48 | 58.18 * 83.24 v mushroom (10) 99.85 | 99.77 * 95.77 * primary-tumor (10) 29 | 24.78 * 49.35 v segment (10) 77.42 | 75.15 * 80.1 v sick (10) 65.92 | 93.85 v 92.71 v sonar (10) 58.02 | 57.17 67.97 v soybean (10) 86.81 | 86.12 * 92.9 v splice (10) 88.61 | 41.97 * 95.41 v vehicle (10) 52.94 | 32.77 * 44.8 * vote (10) 91.5 | 61.38 * 90.19 * vowel (10) 57.56 | 36.34 * 62.81 v waveform (10) 56.33 | 46.11 * 80.02 v zoo (10) 94.05 | 94.26 95.04 v ------------------------------------ (v| |*) | (9|3|23) (22|5|8)
Valid options are:
-C Don't weight voting intervals by confidence
-B <bias> Set exponential bias towards confident intervals (default = 0.6)
Constructor and Description |
---|
VFI() |
Modifier and Type | Method and Description |
---|---|
java.lang.String |
biasTipText()
Returns the tip text for this property
|
void |
buildClassifier(weka.core.Instances instances)
Generates the classifier.
|
double[] |
distributionForInstance(weka.core.Instance instance)
Classifies the given test instance.
|
double |
getBias()
Get the value of the bias parameter
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
java.lang.String[] |
getOptions()
Gets the current settings of VFI
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
boolean |
getWeightByConfidence()
Get whether feature intervals are being weighted by confidence
|
java.lang.String |
globalInfo()
Returns a string describing this search method
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] args)
Main method for testing this class.
|
void |
setBias(double b)
Set the value of the exponential bias towards more confident intervals
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setWeightByConfidence(boolean c)
Set weighting by confidence
|
java.lang.String |
toString()
Returns a description of this classifier.
|
java.lang.String |
weightByConfidenceTipText()
Returns the tip text for this property
|
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
public java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface weka.core.TechnicalInformationHandler
public java.util.Enumeration<weka.core.Option> listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.classifiers.AbstractClassifier
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-C Don't weight voting intervals by confidence
-B <bias> Set exponential bias towards confident intervals (default = 0.6)
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.classifiers.AbstractClassifier
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String weightByConfidenceTipText()
public void setWeightByConfidence(boolean c)
c
- true if feature intervals are to be weighted by confidencepublic boolean getWeightByConfidence()
public java.lang.String biasTipText()
public void setBias(double b)
b
- the value of the bias parameterpublic double getBias()
public java.lang.String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.classifiers.AbstractClassifier
public weka.core.Capabilities getCapabilities()
getCapabilities
in interface weka.classifiers.Classifier
getCapabilities
in interface weka.core.CapabilitiesHandler
getCapabilities
in class weka.classifiers.AbstractClassifier
public void buildClassifier(weka.core.Instances instances) throws java.lang.Exception
buildClassifier
in interface weka.classifiers.Classifier
instances
- set of instances serving as training datajava.lang.Exception
- if the classifier has not been generated successfullypublic java.lang.String toString()
toString
in class java.lang.Object
public double[] distributionForInstance(weka.core.Instance instance) throws java.lang.Exception
distributionForInstance
in interface weka.classifiers.Classifier
distributionForInstance
in class weka.classifiers.AbstractClassifier
instance
- the instance to be classifiedjava.lang.Exception
- if the instance can't be classifiedpublic java.lang.String getRevision()
getRevision
in interface weka.core.RevisionHandler
getRevision
in class weka.classifiers.AbstractClassifier
public static void main(java.lang.String[] args)
args
- should contain command line arguments for evaluation (see
Evaluation).