- getAddAMIndicator() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Return true if an AM indicator attribute is to be created.
- getAddDayOfMonth() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Return true if a day of the month attribute is to be created.
- getAddDayOfWeek() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Return true if a day of the week attribute is to be created.
- getAddMonthOfYear() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Returns true if a month of the year attribute is to be created.
- getAddNumDaysInMonth() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Return true if a num days in the month attribute is to be created.
- getAddQuarterOfYear() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Returns true if a quarter attribute is to be created.
- getAddWeekendIndicator() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Returns true if a weekend indicator attribute is to be created.
- getAdjustForTrends() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Returns true if we are adjusting for trends via a real or artificial time
stamp.
- getAdjustForVariance() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Returns true if we are adjusting for variance by taking the log of the
target(s).
- getAlgorithmName() - Method in interface weka.classifiers.timeseries.TSForecaster
-
Provides a short name that describes the underlying algorithm
in some way.
- getAlgorithmName() - Method in class weka.classifiers.timeseries.WekaForecaster
-
Provides a short name that describes the underlying algorithm in some way.
- getArtificialTimeStartOffset() - Method in class weka.gui.beans.TimeSeriesForecasting
-
Get the offset, from the value associated with the last training instance,
for the artificial time stamp.
- getArtificialTimeStartOffset() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Get the offset, from the value associated with the last training instance,
for the artificial time stamp.
- getArtificialTimeStartValue() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Returns the current value of the artificial time stamp.
- getAttributeIndices() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
-
Get the current range selection
- getAverageConsecutiveLongLags() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Returns true if consecutive long lagged variables are to be averaged.
- getAverageLagsAfter() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Return the point after which long lagged variables will be averaged.
- getBaseClassifier() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Get the underlying Weka classifier that will be used to make the
predictions
- getBaseForecaster() - Method in class weka.classifiers.timeseries.WekaForecaster
-
Get the base Weka regression scheme being used to make forecasts
- getBeanDescriptor() - Method in class weka.gui.beans.TimeSeriesForecastingBeanInfo
-
Get the bean descriptor for this bean
- getCalculateConfIntervalsForForecasts() - Method in interface weka.classifiers.timeseries.core.ConfidenceIntervalForecaster
-
Return the number of steps for which confidence intervals will be computed.
- getCalculateConfIntervalsForForecasts() - Method in class weka.classifiers.timeseries.WekaForecaster
-
Return the number of steps for which confidence intervals will be computed.
- getCapabilities() - Method in class weka.classifiers.timeseries.core.TimeSeriesTranslate
-
Returns the Capabilities of this filter.
- getCapabilities() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Returns the Capabilities of this filter.
- getConfidenceLevel() - Method in interface weka.classifiers.timeseries.core.ConfidenceIntervalForecaster
-
Get the confidence level in use for computing confidence intervals.
- getConfidenceLevel() - Method in class weka.classifiers.timeseries.core.ErrorBasedConfidenceIntervalEstimator
-
Get the confidence level in use
- getConfidenceLevel() - Method in class weka.classifiers.timeseries.WekaForecaster
-
Get the confidence level in use for computing confidence intervals.
- getConfidenceLimitsForTarget(String, double, int) - Method in class weka.classifiers.timeseries.core.ErrorBasedConfidenceIntervalEstimator
-
Get the confidence limits (upper and lower bounds) for the named target
at the given step number
- getConfidenceOffsets(double, List<List<NumericPrediction>>) - Method in class weka.classifiers.timeseries.core.ErrorBasedConfidenceIntervalEstimator
-
Get the confidence bound offsets for each target at the supplied
confidence level
- getCurrentTimeStampValue() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Returns the current (i.e.
- getCustomEditorForStep() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Get the fully qualified name of the GUI editor for this step
- getCustomizeDateDerivedPeriodics() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Returns true if the date-derived periodics check box is selected.
- getCustomName() - Method in class weka.gui.beans.TimeSeriesForecasting
-
Get the custom (descriptive) name for this bean (if one has been set)
- getCustomPeriodics() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Get the date-derived custom periodic attributes in use.
- getDateTimeStampFinal() - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
-
Get the last date timestamp value in the batch training data
- getDateTimeStampInitial() - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
-
Get the first date time stamp value in the batch training data
- getDayString() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Get the day of the week as a string.
- getDefaultDriver() - Static method in class weka.classifiers.timeseries.eval.graph.GraphDriver
-
Get the default graph driver (currently uses the JFreeChart library)
- getDefaultSettings() - Method in class weka.gui.knowledgeflow.TimeSeriesPerspective
-
- getDefinition() - Method in class weka.classifiers.timeseries.eval.DACModule
-
Return the mathematical formula that this
evaluation module computes.
- getDefinition() - Method in class weka.classifiers.timeseries.eval.ErrorModule
-
Return the mathematical formula that this
evaluation module computes.
- getDefinition() - Method in class weka.classifiers.timeseries.eval.MAEModule
-
Return the mathematical formula that this
evaluation module computes.
- getDefinition() - Method in class weka.classifiers.timeseries.eval.MAPEModule
-
- getDefinition() - Method in class weka.classifiers.timeseries.eval.MSEModule
-
Return the mathematical formula that this
evaluation module computes.
- getDefinition() - Method in class weka.classifiers.timeseries.eval.RAEModule
-
Return the mathematical formula that this
evaluation module computes.
- getDefinition() - Method in class weka.classifiers.timeseries.eval.RMSEModule
-
Return the mathematical formula that this
evaluation module computes.
- getDefinition() - Method in class weka.classifiers.timeseries.eval.RRSEModule
-
Return the mathematical formula that this
evaluation module computes.
- getDefinition() - Method in class weka.classifiers.timeseries.eval.TSEvalModule
-
Return the mathematical formula that this
evaluation module computes.
- getDeltaTime() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Return the difference between time values.
- getDescription() - Method in class weka.classifiers.timeseries.eval.DACModule
-
Return the longer (single sentence) description
of this evaluation module
- getDescription() - Method in class weka.classifiers.timeseries.eval.ErrorModule
-
Return the longer (single sentence) description
of this evaluation module
- getDescription() - Method in class weka.classifiers.timeseries.eval.MAEModule
-
Return the longer (single sentence) description
of this evaluation module
- getDescription() - Method in class weka.classifiers.timeseries.eval.MAPEModule
-
- getDescription() - Method in class weka.classifiers.timeseries.eval.MSEModule
-
Return the longer (single sentence) description
of this evaluation module
- getDescription() - Method in class weka.classifiers.timeseries.eval.RAEModule
-
Return the longer (single sentence) description
of this evaluation module
- getDescription() - Method in class weka.classifiers.timeseries.eval.RMSEModule
-
Return the longer (single sentence) description
of this evaluation module
- getDescription() - Method in class weka.classifiers.timeseries.eval.RRSEModule
-
Return the longer (single sentence) description
of this evaluation module
- getDescription() - Method in class weka.classifiers.timeseries.eval.TSEvalModule
-
Return the longer (single sentence) description
of this evaluation module
- getDriver(String) - Static method in class weka.classifiers.timeseries.eval.graph.GraphDriver
-
Factory method for obtaining a named graph driver for producing
graphs
- getEncodedForecaster() - Method in class weka.gui.beans.TimeSeriesForecasting
-
Gets the base 64 encoded forecaster
- getEncodedForecaster() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Gets the base 64 encoded forecaster
- getErrorsForTarget(String) - Method in class weka.classifiers.timeseries.eval.ErrorModule
-
Get a list of the errors for the supplied target
- getEvalName() - Method in class weka.classifiers.timeseries.eval.DACModule
-
Return the short identifying name of this evaluation module
- getEvalName() - Method in class weka.classifiers.timeseries.eval.ErrorModule
-
Return the short identifying name of this evaluation module
- getEvalName() - Method in class weka.classifiers.timeseries.eval.MAEModule
-
Return the short identifying name of this evaluation module
- getEvalName() - Method in class weka.classifiers.timeseries.eval.MAPEModule
-
- getEvalName() - Method in class weka.classifiers.timeseries.eval.MSEModule
-
Return the short identifying name of this evaluation module
- getEvalName() - Method in class weka.classifiers.timeseries.eval.RAEModule
-
Return the short identifying name of this evaluation module
- getEvalName() - Method in class weka.classifiers.timeseries.eval.RMSEModule
-
Return the short identifying name of this evaluation module
- getEvalName() - Method in class weka.classifiers.timeseries.eval.RRSEModule
-
Return the short identifying name of this evaluation module
- getEvalName() - Method in class weka.classifiers.timeseries.eval.TSEvalModule
-
Return the short identifying name of this evaluation module
- getEvaluateOnTestData() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Get whether evaluation is to be performed on the test data.
- getEvaluateOnTrainingData() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Get whether evaluation is to be performed on the training data
- getEvaluationModules() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Get the evaluation modules in use
- getEventSetDescriptors() - Method in class weka.gui.beans.TimeSeriesForecastingBeanInfo
-
- getExcludeSeasonalCorrection() - Method in class weka.classifiers.timeseries.HoltWinters
-
Get whether to exclude the seasonal correction
- getExcludeTrendCorrection() - Method in class weka.classifiers.timeseries.HoltWinters
-
Get whether to exclude the trend correction
- getExplorer() - Method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
-
Unused - just returns null
- getFieldName() - Method in class weka.classifiers.timeseries.gui.CustomPeriodicEditor
-
Get the name for this custom periodic test (will be used as the field name)
- getFieldsToForecast() - Method in class weka.classifiers.timeseries.AbstractForecaster
-
Get the fields to forecast.
- getFieldsToForecast() - Method in interface weka.classifiers.timeseries.TSForecaster
-
Get the fields to forecast.
- getFieldsToLag() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Get the names of the fields to create lagged variables for.
- getFieldsToLagAsString() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
- getFilename() - Method in class weka.gui.beans.TimeSeriesForecasting
-
Get the filename to load from.
- getFilename() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Get the filename to load from.
- getFillWithMissing() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
-
Gets whether missing values should be used rather than removing instances
where the translated value is not known (due to border effects).
- getForecaster() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
-
Get the WekaForecaster that is being configured.
- getForecaster() - Method in class weka.gui.beans.TimeSeriesForecasting
-
Get the forecaster.
- getForecaster(String) - Static method in class weka.gui.beans.TimeSeriesForecasting
-
Decodes and returns a forecasting model (list containing the forecaster and
Instances object containing the structure of the data used to train the
forecaster) from a base 64 string.
- getForecaster() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Get the forecaster.
- getForecaster(String) - Static method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Decodes and returns a forecasting model (list containing the forecaster and
Instances object containing the structure of the data used to train the
forecaster) from a base 64 string.
- getForecastFuture() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Get whether future forecasts beyond the end of the training and/or test
data will be generated.
- getGraphFuturePredictions() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Returns true if the user has opted to graph future predictions
- getGraphPanelSteps(TSForecaster, List<ErrorModule>, String, List<Integer>, int, Instances) - Method in class weka.classifiers.timeseries.eval.graph.GraphDriver
-
Return the graph encapsulated in a JPanel.
- getGraphPanelSteps(TSForecaster, List<ErrorModule>, String, List<Integer>, int, Instances) - Method in class weka.classifiers.timeseries.eval.graph.JFreeChartDriver
-
Return the graph encapsulated in a JPanel.
- getGraphPanelTargets(TSForecaster, ErrorModule, List<String>, int, int, Instances) - Method in class weka.classifiers.timeseries.eval.graph.GraphDriver
-
Return the graph encapsulated in a panel.
- getGraphPanelTargets(TSForecaster, ErrorModule, List<String>, int, int, Instances) - Method in class weka.classifiers.timeseries.eval.graph.JFreeChartDriver
-
Return the graph encapsulated in a panel.
- getGraphPredictionsAtStep() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Get the step number to graph all the targets at.
- getGraphTargetForSteps() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Returns true if the user has opted to graph a target at specified steps
- getGraphTargetForStepsStepList() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
If the user has opted to graph a target a various steps, then this method
returns the list of steps that they have selected.
- getGraphTargetForStepsTarget() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Return the target that is to be graphed at various steps
- getHoldoutSetSize() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Gets the size of the holdout set.
- getHorizon() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
-
Get the horizon (i.e.
- getHorizonValue() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
-
Get the value in the horizon spinner (i.e.
- getImageFromChart(JPanel, int, int) - Method in class weka.classifiers.timeseries.eval.graph.GraphDriver
-
Get an image representation of the supplied chart.
- getImageFromChart(JPanel, int, int) - Method in class weka.classifiers.timeseries.eval.graph.JFreeChartDriver
-
Get an image representation of the supplied chart.
- getIncludePowersOfTime() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Get whether to include powers of time in the transformed data
- getIncludeTimeLagProducts() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Get whether to include products between time and the lagged variables
- getIncomingConnectionTypes() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
- getInstanceRange() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
-
Gets the number of instances forward to translate values between.
- getInvertSelection() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
-
Get whether the supplied columns are to be removed or kept
- getLabel() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest
-
Get the optional label for this interval.
- getLagRange() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Get the ranges used to fine tune lag selection
- getLowerTest() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest
-
Get the lower bound test
- getMaxLag() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Get the maximum lag to create.
- getMinLag() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Get the minimum lag to create.
- getMinRequiredTrainingPoints() - Method in class weka.classifiers.timeseries.HoltWinters
-
Return the minimum number of training/priming data points required before a
forecast can be made
- getMinRequiredTrainingPoints() - Method in interface weka.classifiers.timeseries.PrimingDataLearner
-
Return the minimum number of training/priming data points required before a
forecast can be made
- getModule(String) - Static method in class weka.classifiers.timeseries.eval.TSEvalModule
-
Factory method for obtaining a named evaluation module.
- getModuleList() - Static method in class weka.classifiers.timeseries.eval.TSEvalModule
-
Gets a list of known evaluation modules.
- getMonthString() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Get the month as a String.
- getNumConsecutiveLongLagsToAverage() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Get the number of consecutive long lagged variables to average.
- getNumStepsToForecast() - Method in class weka.gui.beans.TimeSeriesForecasting
-
Get the number of time steps to forecast beyond the end of the incoming
priming data.
- getNumStepsToForecast() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Get the number of time steps to forecast beyond the end of the incoming
priming data.
- getOptions() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
-
Gets the current settings of the filter.
- getOptions() - Method in class weka.classifiers.timeseries.HoltWinters
-
- getOptions() - Method in class weka.classifiers.timeseries.WekaForecaster
-
Gets the current settings of this Forecaster.
- getOptions() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Gets the current settings of the LagMaker.
- getOutgoingConnectionTypes() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
- getOutputFuturePredictions() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Returns true if the user has opted to output future predictions
- getOutputPredictionsAtStep() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Returns at which step to output predictions.
- getOutputPredictionsTarget() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Get the selected target to output predictions for.
- getOverlayFields() - Method in interface weka.classifiers.timeseries.core.OverlayForecaster
-
Get a comma-separated list of fields that considered to be overlay
fields
- getOverlayFields() - Method in class weka.classifiers.timeseries.WekaForecaster
-
Get a comma-separated list of fields that considered to be overlay fields
- getOverlayFields() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Get overlay fields
- getPanelFutureForecast(TSForecaster, List<List<NumericPrediction>>, List<String>, Instances) - Method in class weka.classifiers.timeseries.eval.graph.GraphDriver
-
Return the graph encapsulated in a JPanel
- getPanelFutureForecast(TSForecaster, List<List<NumericPrediction>>, List<String>, Instances) - Method in class weka.classifiers.timeseries.eval.graph.JFreeChartDriver
-
Return the graph encapsulated in a JPanel
- getPeriodicity() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Gets the Periodicity representing the time stamp in use for this lag maker.
- getPeriodicity() - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
-
Get periodicity being managed
- getPerspectiveIcon() - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
-
Get the icon for this perspective.
- getPerspectiveTipText() - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
-
Get the tool tip text for this perspective.
- getPerspectiveTitle() - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
-
Get the title of this perspective
- getPredictionsForAllTargets() - Method in class weka.classifiers.timeseries.eval.ErrorModule
-
Gets the predictions for all targets
- getPredictionsForTarget(String) - Method in class weka.classifiers.timeseries.eval.ErrorModule
-
Get a list of predictions (plus actuals if known) for the supplied target
- getPredictionsForTestData(int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Get predictions for all targets for the specified step number on the test
data
- getPredictionsForTrainingData(int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Get predictions for all targets for the specified step number on the
training data
- getPreviousActual() - Method in class weka.classifiers.timeseries.eval.RAEModule
-
Get the actual target values from the immediately preceding
time step.
- getPreviousActual() - Method in class weka.classifiers.timeseries.eval.RRSEModule
-
Get the actual target values from the immediately preceding
time step.
- getPreviousState() - Method in interface weka.classifiers.timeseries.core.StateDependentPredictor
-
Get the last set state of the model.
- getPreviousState() - Method in interface weka.classifiers.timeseries.TSForecaster
-
Get the last set state of the model.
- getPreviousState() - Method in class weka.classifiers.timeseries.WekaForecaster
-
Get the last set state of the model.
- getPrimaryPeriodicFieldName() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
The name of the primary periodic attribute or null if one hasn't been
specified.
- getPrimeForTestDataWithTestData() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Gets whether evaluation for the test data will begin by priming with the
first x instances from the test data and then forecasting from step x + 1.
- getPrimeWindowSize() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Get the size of the priming window - i.e.
- getRebuildForecaster() - Method in class weka.gui.beans.TimeSeriesForecasting
-
Get whether the forecaster will be rebuilt/re-estimated on the incoming
data.
- getRebuildForecaster() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Get whether the forecaster will be rebuilt/re-estimated on the incoming
data.
- getRemoveLeadingInstancesWithUnknownLagValues() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Get whether to drop instances at the start of the transformed data where
lag values are unknown/missing
- getRevision() - Method in class weka.classifiers.timeseries.core.TimeSeriesTranslate
-
Returns the revision string.
- getSaveFilename() - Method in class weka.gui.beans.TimeSeriesForecasting
-
Get the name of the file to save the forecasting model to if the user has
opted to rebuild the forecaster using the incoming data.
- getSaveFilename() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Get the name of the file to save the forecasting model to if the user has
opted to rebuild the forecaster using the incoming data.
- getSeasonalSmoothingFactor() - Method in class weka.classifiers.timeseries.HoltWinters
-
Get the seasonal smoothing factor
- getSeasonCycleLength() - Method in class weka.classifiers.timeseries.HoltWinters
-
Get the length of a "year", i.e.
- getSelectedTimeStampField() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
-
Get the selected time stamp field name.
- getSkipEntries() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Get a list of time units to be 'skipped' - i.e.
- getTabTitle() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Get a title for displaying in the tab that will hold this panel
- getTabTitle() - Method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
-
Get the title for this tab
- getTabTitle() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
-
Get the title for this panel suitable for displaying in a tab.
- getTabTitleToolTip() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Get the tool tip for this configuration panel
- getTabTitleToolTip() - Method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
-
Get the tool tip for this tab
- getTabTitleToolTip() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
-
Get the tool tip for this panel.
- getTargetFields() - Method in class weka.classifiers.timeseries.eval.TSEvalModule
-
Get the list of target field names.
- getTestBeingEdited() - Method in class weka.classifiers.timeseries.gui.CustomPeriodicTestEditor
-
Get the test being edited
- getTestData() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Get the test data (if any)
- getTimeStampField() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Get the name of the time stamp field.
- getTrainingData() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Get the training data (if any)
- getTransformedData(Instances) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Creates a transformed data set based on the user's settings
- getTrendSmoothingFactor() - Method in class weka.classifiers.timeseries.HoltWinters
-
Get the trend smoothing factor
- getTSLagMaker() - Method in interface weka.classifiers.timeseries.core.TSLagUser
-
Get the TSLagMaker that we are using.
- getTSLagMaker() - Method in class weka.classifiers.timeseries.WekaForecaster
-
Get the TSLagMaker that we are using.
- getUpperTest() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest
-
Get the upper bound test
- getValueSmoothingFactor() - Method in class weka.classifiers.timeseries.HoltWinters
-
Get the value smoothing factor
- getVisual() - Method in class weka.gui.beans.TimeSeriesForecasting
-
Gets the visual appearance of this wrapper bean
- globalInfo() - Method in class weka.classifiers.timeseries.core.TimeSeriesTranslate
-
Returns a string describing this classifier
- globalInfo() - Method in class weka.classifiers.timeseries.HoltWinters
-
Description of this forecaster.
- globalInfo() - Method in class weka.filters.supervised.attribute.TSLagMaker
-
- globalInfo() - Method in class weka.gui.beans.TimeSeriesForecasting
-
Global about information for this component.
- GraphDriver - Class in weka.classifiers.timeseries.eval.graph
-
Abstract base class for graph drivers.
- GraphDriver() - Constructor for class weka.classifiers.timeseries.eval.graph.GraphDriver
-
- graphFutureForecastOnTesting(GraphDriver, TSForecaster, List<String>) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Graph historical and future forecasted values using a graph driver for the
test.
- graphFutureForecastOnTraining(GraphDriver, TSForecaster, List<String>) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Graph historical and future forecasted values using a graph driver for the
training data.
- graphPredictionsForStepsOnTesting(GraphDriver, TSForecaster, String, List<Integer>, int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Graph predicted values at the given step-ahead levels for a single target
on the test data.
- graphPredictionsForStepsOnTraining(GraphDriver, TSForecaster, String, List<Integer>, int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Graph predicted values at the given step-ahead levels for a single target
on the training data.
- graphPredictionsForTargetsOnTesting(GraphDriver, TSForecaster, List<String>, int, int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Graph predicted values at the given step-ahead level for the supplied
targets on the test data.
- graphPredictionsForTargetsOnTraining(GraphDriver, TSForecaster, List<String>, int, int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Graph predicted values at the given step-ahead level for the supplied
targets on the training data.
- saveBaseModel(String) - Method in interface weka.classifiers.timeseries.TSForecaster
-
Save underlying classifier
- saveBaseModel(String) - Method in class weka.classifiers.timeseries.WekaForecaster
-
Save underlying classifier
- saveChartToFile(JPanel, String, int, int) - Method in class weka.classifiers.timeseries.eval.graph.GraphDriver
-
Save a chart to a file.
- saveChartToFile(JPanel, String, int, int) - Method in class weka.classifiers.timeseries.eval.graph.JFreeChartDriver
-
Save a chart to a file.
- seasonalSmoothingFactorTipText() - Method in class weka.classifiers.timeseries.HoltWinters
-
Tip text for this property
- seasonCycleLengthTipText() - Method in class weka.classifiers.timeseries.HoltWinters
-
Tip text for this property
- serializeModel(String) - Method in interface weka.classifiers.timeseries.core.BaseModelSerializer
-
Serialize model
- serializeState(String) - Method in interface weka.classifiers.timeseries.core.StateDependentPredictor
-
Serialize model state
- serializeState(String) - Method in interface weka.classifiers.timeseries.TSForecaster
-
Serialize model state
- serializeState(String) - Method in class weka.classifiers.timeseries.WekaForecaster
-
Serialize model state
- setActive(boolean) - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
-
Make this perspective the active (visible) one in the KF
- setAddAMIndicator(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set whether to create an AM indicator attribute.
- setAddDayOfMonth(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set whether to create a day of the month attribute.
- setAddDayOfWeek(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set whether to create a day of the week attribute.
- setAddMonthOfYear(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set whether to create a month of the year attribute.
- setAddNumDaysInMonth(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set whether to create a numeric attribute that holds the number of days in
the month.
- setAddQuarterOfYear(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set whether to create a quarter attribute.
- setAddWeekendIndicator(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set whether to create a weekend indicator attribute.
- setAdjustForTrends(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set whether to adjust for trends or not.
- setAdjustForVariance(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set whether to adjust for variance in the data by taking the log of the
target(s).
- setAdvancedConfig(AdvancedConfigPanel) - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
-
Set a reference to the advanced configuration panel.
- setArtificialTimeStartOffset(String) - Method in class weka.gui.beans.TimeSeriesForecasting
-
Set the offset, from the value associated with the last training instance,
for the artificial time stamp.
- setArtificialTimeStartOffset(String) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Set the offset, from the value associated with the last training instance,
for the artificial time stamp.
- setArtificialTimeStartValue(double) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set the starting value for the artificial time stamp.
- setAttributeIndices(String) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
-
Set which attributes are to be copied (or kept if invert is true)
- setAttributeIndicesArray(int[]) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
-
Set which attributes are to be copied (or kept if invert is true)
- setAverageConsecutiveLongLags(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Sets whether to average consecutive long lagged variables.
- setAverageLagsAfter(int) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set at which point consecutive long lagged variables are to be averaged
(default = 2, i.e.
- setBaseForecaster(Classifier) - Method in class weka.classifiers.timeseries.WekaForecaster
-
Set the base Weka regression scheme to use.
- setCalculateConfIntervalsForForecasts(int) - Method in interface weka.classifiers.timeseries.core.ConfidenceIntervalForecaster
-
Set the number of steps for which to compute confidence intervals for.
- setCalculateConfIntervalsForForecasts(int) - Method in class weka.classifiers.timeseries.WekaForecaster
-
Set the number of steps for which to compute confidence intervals for.
- setClipboard(TimeSeriesForecasting) - Static method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
-
Sets the knowledge flow's paste buffer equal to the
supplied configured TimeSeriesForecasting component.
- setConfidenceLevel(double) - Method in interface weka.classifiers.timeseries.core.ConfidenceIntervalForecaster
-
Set the confidence level for confidence intervals.
- setConfidenceLevel(double) - Method in class weka.classifiers.timeseries.WekaForecaster
-
Set the confidence level for confidence intervals.
- setCustomName(String) - Method in class weka.gui.beans.TimeSeriesForecasting
-
Set a custom (descriptive) name for this bean
- setCustomPeriodics(Map<String, ArrayList<CustomPeriodicTest>>) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set the date-derived custom periodic fields to use/compute
- setDateTimeStampFinal(long) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
-
Set the last date timestamp value in the batch training data
- setDateTimeStampInitial(long) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
-
Set the first date time stamp value in the batch training data
- setDayOfMonth(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Set the day of the month for this bound.
- setDayOfWeek(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Set the day of the week for this bound.
- setDayOfYear(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Set the day of the year for this bound.
- setDeltaTime(double) - Method in enum weka.filters.supervised.attribute.TSLagMaker.Periodicity
-
- setDeltaTime(double) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
-
Set the delta time for the periodicity being managed
- setEnabled(boolean) - Method in class weka.classifiers.timeseries.gui.CustomPeriodicTestEditor
-
Set the enabled status of all the GUI elements
- setEncodedForecaster(String) - Method in class weka.gui.beans.TimeSeriesForecasting
-
Set the base 64 encoded forecaster.
- setEncodedForecaster(String) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Set the base 64 encoded forecaster.
- setEnvironment(Environment) - Method in class weka.gui.beans.TimeSeriesForecasting
-
Set environment variables to use.
- setEnvironment(Environment) - Method in class weka.gui.beans.TimeSeriesForecastingCustomizer
-
Set the environment variables to use.
- setEvaluateOnTestData(boolean) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Set whether to perform evaluation on the training data
- setEvaluateOnTrainingData(boolean) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Set whether to perform evaluation on the training data
- setEvaluationModules(String) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Set the evaluation modules to use/
- setExcludeSeasonalCorrection(boolean) - Method in class weka.classifiers.timeseries.HoltWinters
-
Set whether to exclude the seasonal correction
- setExcludeTrendCorrection(boolean) - Method in class weka.classifiers.timeseries.HoltWinters
-
Set whether to exclude the trend correction
- setExplorer(Explorer) - Method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
-
Unused
- setFieldName(String) - Method in class weka.classifiers.timeseries.gui.CustomPeriodicEditor
-
Set the name for this custom periodic test
- setFieldsToForecast(String) - Method in class weka.classifiers.timeseries.AbstractForecaster
-
Set the names of the fields/attributes in the data to forecast.
- setFieldsToForecast(String) - Method in interface weka.classifiers.timeseries.TSForecaster
-
Set the names of the fields/attributes in the data to forecast.
- setFieldsToForecast(String) - Method in class weka.classifiers.timeseries.WekaForecaster
-
Set the names of the fields/attributes in the data to forecast.
- setFieldsToLag(List<String>) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set the names of the fields to create lagged variables for
- setFieldsToLagAsString(String) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
- setFilename(String) - Method in class weka.gui.beans.TimeSeriesForecasting
-
Set the filename to load from.
- setFilename(File) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Set the filename to load from.
- setFillWithMissing(boolean) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
-
Sets whether missing values should be used rather than removing instances
where the translated value is not known (due to border effects).
- setForecaster(WekaForecaster) - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
-
Set the WekaForecaster that is to be configured by this panel.
- setForecastFuture(boolean) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Set whether we should generate a future forecast beyond the end of the
training and/or test data.
- setHorizon(int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Set the horizon - i.e.
- setHorizon(int) - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
-
Set the horizon (i.e.
- setHourOfDay(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Set the hour of the day for this bound.
- setIncludePowersOfTime(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set whether to include powers of time in the transformed data
- setIncludeTimeLagProducts(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set whether to include products between time and the lagged variables
- setInputFormat(Instances) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
-
Sets the format of the input instances.
- setInputFormat(Instances) - Method in class weka.classifiers.timeseries.core.TimeSeriesTranslate
-
Sets the format of the input instances.
- setInputFormat(Instances) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
- setInstanceRange(int) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
-
Sets the number of instances forward to translate values between.
- setInstances(Instances) - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
-
Set the instances that will be used in the training and evaluation of the
forecaster
- setInstances(Instances) - Method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
-
Set the working instances for this panel.
- setInstances(Instances) - Method in class weka.classifiers.timeseries.gui.ForecastingPanel
-
Set the training instances to use
- setInstances(Instances) - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
-
Set the instances that will be used to train and/or test the forecaster.
- setInstances(Instances) - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
-
Set instances (if the perspective accepts them)
- setInstances(Instances) - Method in class weka.gui.knowledgeflow.TimeSeriesPerspective
-
- setInvertSelection(boolean) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
-
Set whether selected columns should be removed or kept.
- setIsDateBased(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
-
Set whether the periodicity being managed is date timestamp-based
- setIsUpper(boolean) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Set whether this is the upper bound or not.
- setLabel(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest
-
Set the label for this interval
- setLagRange(String) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set ranges to fine tune lag selection.
- setLoaded(boolean) - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
-
Tell this perspective whether or not it is part of the users
perspectives toolbar in the KnowledgeFlow.
- setLog(Logger) - Method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
-
Set the logging object to use
- setLog(Logger) - Method in class weka.classifiers.timeseries.gui.ForecastingPanel
-
Set the log to use
- setLog(Logger) - Method in class weka.gui.beans.TimeSeriesForecasting
-
Set the logging object to use
- setLog(Logger) - Method in class weka.gui.knowledgeflow.TimeSeriesPerspective
-
- setMainKFPerspective(KnowledgeFlowApp.MainKFPerspective) - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
-
Set a reference to the main KnowledgeFlow perspective - i.e.
- setMaxLag(int) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set the maximum lag to create (default = 12, i.e.
- setMinLag(int) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set the minimum lag to create (default = 1, i.e.
- setMinuteOfHour(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Set the minute of the hour for this bound.
- setMonth(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Set the month for this bound.
- setNumConsecutiveLongLagsToAverage(int) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set the number of long lagged variables to average for each averaged
variable created (default = 2, e.g.
- setNumStepsToForecast(String) - Method in class weka.gui.beans.TimeSeriesForecasting
-
Set the number of time steps to forecast beyond the end of the incoming
priming data.
- setNumStepsToForecast(String) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Set the number of time steps to forecast beyond the end of the incoming
priming data.
- setObject(Object) - Method in class weka.gui.beans.TimeSeriesForecastingCustomizer
-
Set the object to edit
- setOperator(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Set the operator for this bound
- setOptions(String[]) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
-
Parses a given list of options controlling the behaviour of this object.
- setOptions(String[]) - Method in class weka.classifiers.timeseries.HoltWinters
-
- setOptions(String[]) - Method in class weka.classifiers.timeseries.WekaForecaster
-
Set the options for the forecaster
- setOptions(String[]) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Parses a given list of options.
- setOverlayFields(String) - Method in interface weka.classifiers.timeseries.core.OverlayForecaster
-
Set the fields to consider as overlay fields
- setOverlayFields(String) - Method in class weka.classifiers.timeseries.WekaForecaster
-
Set the fields to consider as overlay fields
- setOverlayFields(List<String>) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set the names of fields in the data that are to be considered "overlay"
fields - i.e.
- setParentWindow(Window) - Method in class weka.gui.beans.TimeSeriesForecastingCustomizer
-
Set the Window that contains this customizer
- setPeriodicity(TSLagMaker.Periodicity) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
-
Set periodicity to manage
- setPeriodicity(TSLagMaker.Periodicity) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set the periodicity for the data.
- setPreviousState(Object) - Method in interface weka.classifiers.timeseries.core.StateDependentPredictor
-
Load state into model.
- setPreviousState(List<Object>) - Method in interface weka.classifiers.timeseries.TSForecaster
-
Load state into model.
- setPreviousState(List<Object>) - Method in class weka.classifiers.timeseries.WekaForecaster
-
Load state into model.
- setPrimaryPeriodicFieldName(String) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set the name of a periodic attribute in the data.
- setPrimeForTestDataWithTestData(boolean) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Set whether evaluation for test data should begin by priming with the first
x test data instances and then forecasting from step x + 1.
- setPrimeWindowSize(int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Set the size of the priming window - i.e.
- setRebuildForecaster(boolean) - Method in class weka.gui.beans.TimeSeriesForecasting
-
Set whether the forecaster should be rebuilt/re-estimated on the incoming
data.
- setRebuildForecaster(boolean) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Set whether the forecaster should be rebuilt/re-estimated on the incoming
data.
- setRebuildModelAfterEachTestForecastStep(boolean) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Set whether the forecasting model should be rebuilt after each forecasting
step on the test data using both the training data and test data up to the
current instance.
- setRelativeRAEModule(RAEModule) - Method in class weka.classifiers.timeseries.eval.RAEModule
-
Set a RAEModule to use for the relative calculations - i.e.
- setRelativeRRSEModule(RRSEModule) - Method in class weka.classifiers.timeseries.eval.RRSEModule
-
Set a RRSEModule to use for the relative calculations - i.e.
- setRemoveLeadingInstancesWithUnknownLagValues(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set whether to drop instances at the start of the transformed data where
lag values are unknown/missing
- setSaveFilename(String) - Method in class weka.gui.beans.TimeSeriesForecasting
-
Set the name of the file to save the forecasting model out to if the user
has opted to rebuild the forecaster using the incoming data.
- setSaveFilename(File) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
Set the name of the file to save the forecasting model out to if the user
has opted to rebuild the forecaster using the incoming data.
- setSeasonalSmoothingFactor(double) - Method in class weka.classifiers.timeseries.HoltWinters
-
Set the seasonal smoothing factor
- setSeasonCycleLength(int) - Method in class weka.classifiers.timeseries.HoltWinters
-
Set the length of a "year", i.e.
- setSecond(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Set the second for this bound.
- setSkipEntries(String) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set the list of time units to be 'skipped' - i.e.
- setSkipList(String, String) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
-
Set a list of skip entries
- setTargetFields(List<String>) - Method in class weka.classifiers.timeseries.eval.TSEvalModule
-
Set a list of target field names.
- setTest(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest
-
Set the test as a String
- setTestData(Instances) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Set the test data to use
- setTestToEdit(CustomPeriodicTest) - Method in class weka.classifiers.timeseries.gui.CustomPeriodicTestEditor
-
Set the test to edit
- setTimeSeriesModelListener(TimeSeriesPerspective.TimeSeriesModelListener) - Method in class weka.classifiers.timeseries.gui.ForecastingPanel
-
Set a listener that accepts WekaForecaster models.
- setTimeStampField(String) - Method in class weka.filters.supervised.attribute.TSLagMaker
-
Set the name of the time stamp field in the data
- setTrainingData(Instances) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
-
Set the training data to use
- setTrendSmoothingFactor(double) - Method in class weka.classifiers.timeseries.HoltWinters
-
Set the trend smoothing factor
- setTSLagMaker(TSLagMaker) - Method in interface weka.classifiers.timeseries.core.TSLagUser
-
Set the TSLagMaker to use.
- setTSLagMaker(TSLagMaker) - Method in class weka.classifiers.timeseries.WekaForecaster
-
Set the TSLagMaker to use.
- setValueSmoothingFactor(double) - Method in class weka.classifiers.timeseries.HoltWinters
-
Set the value smoothing factor
- setVisual(BeanVisual) - Method in class weka.gui.beans.TimeSeriesForecasting
-
Sets the visual appearance of this wrapper bean
- setWeekOfMonth(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Set the week of the month for this bound.
- setWeekOfYear(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Set the week of the year for this bound.
- setYear(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
-
Set the year for this bound.
- SHOW_CLIPBOARD_POPUP - Static variable in class weka.gui.knowledgeflow.TimeSeriesPerspective.TimeSeriesDefaults
-
- SHOW_CLIPBOARD_POPUP_KEY - Static variable in class weka.gui.knowledgeflow.TimeSeriesPerspective.TimeSeriesDefaults
-
- SimpleConfigPanel - Class in weka.classifiers.timeseries.gui
-
Class that renders a simple configuration panel for configuring a time series
forecaster.
- SimpleConfigPanel(ForecastingPanel) - Constructor for class weka.classifiers.timeseries.gui.SimpleConfigPanel
-
Constructor
- StateDependentPredictor - Interface in weka.classifiers.timeseries.core
-
An interface for state-dependent predictors.
- stepInit() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
-
- stop() - Method in class weka.gui.beans.TimeSeriesForecasting
-
Stop the component from executing.
- stringToList(String) - Static method in class weka.classifiers.timeseries.AbstractForecaster
-
A utility method for converting a List of Strings to a single
comma separated String.