A B C D E F G H I J L M O P R S T U V W 

A

AbstractForecaster - Class in weka.classifiers.timeseries
Abstract base class implementing TSForecaster that concrete subclasses can extend.
AbstractForecaster() - Constructor for class weka.classifiers.timeseries.AbstractForecaster
 
AbstractTimeSeriesFilter - Class in weka.classifiers.timeseries.core
Re-written version of weka.filters.unsupervised.attribute.AbstractTimeSeriesFilter that adds new methods and uses java.utils collection classes.
AbstractTimeSeriesFilter() - Constructor for class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
 
acceptDataSet(DataSetEvent) - Method in class weka.gui.beans.TimeSeriesForecasting
Accept an incoming data set
acceptForecaster(WekaForecaster, Instances) - Method in interface weka.gui.knowledgeflow.TimeSeriesPerspective.TimeSeriesModelListener
 
acceptInstance(InstanceEvent) - Method in class weka.gui.beans.TimeSeriesForecasting
Accept an incoming instance
acceptsInstances() - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
Returns true if this perspective accepts instances
acceptsInstances() - Method in class weka.gui.knowledgeflow.TimeSeriesPerspective
Returns true, as this panel sends instances into the python environment
addCustomPeriodic(String) - Method in class weka.classifiers.timeseries.WekaForecaster
Add a custom date-derived periodic attribute
addCustomPeriodic(String) - Method in class weka.filters.supervised.attribute.TSLagMaker
Add a custom date-derived periodic
addInstanceListener(InstanceListener) - Method in class weka.gui.beans.TimeSeriesForecasting
Add an listener to be notified of outgoing InstanceEvents
addPropertyChangeListener(PropertyChangeListener) - Method in class weka.classifiers.timeseries.gui.CustomPeriodicTestEditor
Adds a PropertyChangeListener who will be notified of value changes.
AdvancedConfigPanel - Class in weka.classifiers.timeseries.gui
 
AdvancedConfigPanel(SimpleConfigPanel, boolean) - Constructor for class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Constructor
AdvancedConfigPanel(SimpleConfigPanel) - Constructor for class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Constructor
advanceSuppliedTimeValue(double, TSLagMaker.PeriodicityHandler) - Static method in class weka.classifiers.timeseries.core.Utils
Utility method to advance a supplied time value by one unit.
advanceSuppliedTimeValue(double) - Method in class weka.filters.supervised.attribute.TSLagMaker
Utility method to advance a supplied time value by one unit according to the periodicity set for this LagMaker.
applyToEvaluation(TSEvaluation, WekaForecaster) - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Apply the configuration defined in this panel to the supplied evaluation object
applyToEvaluation(TSEvaluation, WekaForecaster) - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Apply the selected settings of this panel to the supplied evaluation module with respect to the supplied forecaster
applyToForecaster(WekaForecaster) - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Apply the configuration defined in this panel to the supplied forecaster
applyToForecaster(WekaForecaster) - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Apply the selected settings of this panel to the supplied WekaForecaster.
attributeIndicesTipText() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Returns the tip text for this property

B

baseModelHasSerializer() - Method in interface weka.classifiers.timeseries.TSForecaster
Check whether the base learner requires special serialization
baseModelHasSerializer() - Method in class weka.classifiers.timeseries.WekaForecaster
Check whether the base learner requires special serialization
BaseModelSerializer - Interface in weka.classifiers.timeseries.core
An interface for predictors which implement methods for serializing the base model.
batchFinished() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Signifies that this batch of input to the filter is finished.
batchFinished() - Method in class weka.filters.supervised.attribute.TSLagMaker
 
buildClassifier(Instances) - Method in class weka.classifiers.timeseries.HoltWinters
 
buildForecaster(Instances, PrintStream...) - Method in class weka.classifiers.timeseries.AbstractForecaster
Builds a new forecasting model using the supplied training data.
buildForecaster(Instances, PrintStream...) - Method in interface weka.classifiers.timeseries.TSForecaster
Builds a new forecasting model using the supplied training data.
buildForecaster(Instances, PrintStream...) - Method in class weka.classifiers.timeseries.WekaForecaster
Builds a new forecasting model using the supplied training data.

C

calculateConfidenceOffsets(TSForecaster, Instances, int, int, double, PrintStream...) - Method in class weka.classifiers.timeseries.core.ErrorBasedConfidenceIntervalEstimator
Computes confidence intervals using the supplied forecster and training data.
calculateConfidenceOffsets(TSForecaster, Instances, int, int, int, double, PrintStream...) - Method in class weka.classifiers.timeseries.core.ErrorBasedConfidenceIntervalEstimator
Computes confidence intervals using the supplied forecaster and training data.
calculateMeasure() - Method in class weka.classifiers.timeseries.eval.DACModule
Calculate the measure that this module represents.
calculateMeasure() - Method in class weka.classifiers.timeseries.eval.ErrorModule
Calculate the measure that this module represents.
calculateMeasure() - Method in class weka.classifiers.timeseries.eval.MAEModule
Calculate the measure that this module represents.
calculateMeasure() - Method in class weka.classifiers.timeseries.eval.MAPEModule
 
calculateMeasure() - Method in class weka.classifiers.timeseries.eval.MSEModule
Calculate the measure that this module represents.
calculateMeasure() - Method in class weka.classifiers.timeseries.eval.RAEModule
Calculate the measure that this module represents.
calculateMeasure() - Method in class weka.classifiers.timeseries.eval.RMSEModule
Calculate the measure that this module represents.
calculateMeasure() - Method in class weka.classifiers.timeseries.eval.RRSEModule
 
calculateMeasure() - Method in class weka.classifiers.timeseries.eval.TSEvalModule
Calculate the measure that this module represents.
classifyInstance(Instance) - Method in class weka.classifiers.timeseries.HoltWinters
 
clearCustomPeriodics() - Method in class weka.classifiers.timeseries.WekaForecaster
clear the list of custom date-derived periodic attributes
clearCustomPeriodics() - Method in class weka.filters.supervised.attribute.TSLagMaker
Clear all custom date-derived periodic fields.
clearLagHistories() - Method in class weka.filters.supervised.attribute.TSLagMaker
Clears any history accumulated in the lag creating filters.
clearPreviousState() - Method in interface weka.classifiers.timeseries.core.StateDependentPredictor
Clear/reset state of the model.
clearPreviousState() - Method in interface weka.classifiers.timeseries.TSForecaster
Reset model state.
clearPreviousState() - Method in class weka.classifiers.timeseries.WekaForecaster
Reset model state.
ConfidenceIntervalForecaster - Interface in weka.classifiers.timeseries.core
Interface to a forecaster that can compute confidence intervals for its forecasts
connectionAllowed(EventSetDescriptor) - Method in class weka.gui.beans.TimeSeriesForecasting
Returns true if, at this time, the object will accept a connection according to the supplied EventSetDescriptor
connectionAllowed(String) - Method in class weka.gui.beans.TimeSeriesForecasting
Returns true if, at this time, the object will accept a connection with respect to the named event
connectionNotification(String, Object) - Method in class weka.gui.beans.TimeSeriesForecasting
Notify this object that it has been registered as a listener with a source with respect to the named event
countsForTargets() - Method in class weka.classifiers.timeseries.eval.ErrorModule
Gets the number of predicted, actual pairs for each target.
createTimeLagCrossProducts(Instances) - Method in class weka.filters.supervised.attribute.TSLagMaker
 
customizerClosing() - Method in class weka.gui.beans.TimeSeriesForecastingCustomizer
Called when the window containing the customizer is closed
CustomPeriodicEditor - Class in weka.classifiers.timeseries.gui
Provides a gui editor for a custom periodic test
CustomPeriodicEditor() - Constructor for class weka.classifiers.timeseries.gui.CustomPeriodicEditor
 
CustomPeriodicEditor(List<CustomPeriodicTest>) - Constructor for class weka.classifiers.timeseries.gui.CustomPeriodicEditor
Constructor
CustomPeriodicTest - Class in weka.classifiers.timeseries.core
Class that evaluates a supplied date against user-specified date constant fields.
CustomPeriodicTest(String) - Constructor for class weka.classifiers.timeseries.core.CustomPeriodicTest
Constructor.
CustomPeriodicTest.Operator - Enum in weka.classifiers.timeseries.core
Enum defining inequality operations
CustomPeriodicTest.TestPart - Class in weka.classifiers.timeseries.core
Inner class defining one boundary of an interval
CustomPeriodicTest.TestPart() - Constructor for class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
 
CustomPeriodicTestEditor - Class in weka.classifiers.timeseries.gui
Provides an editor for a single interval from a custom periodic test.
CustomPeriodicTestEditor(boolean) - Constructor for class weka.classifiers.timeseries.gui.CustomPeriodicTestEditor
Constructor

D

DACModule - Class in weka.classifiers.timeseries.eval
An evaluation module that computes the accuracy of the direction of forecasted values.
DACModule() - Constructor for class weka.classifiers.timeseries.eval.DACModule
 
dateInSkipList(Date) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Checks to see if the supplied date is in the list of time units to skip (i.e.
decrementSuppliedTimeValue(double, TSLagMaker.PeriodicityHandler) - Static method in class weka.classifiers.timeseries.core.Utils
Utility method to decrement a supplied time value by one unit.
decrementSuppliedTimeValue(double) - Method in class weka.filters.supervised.attribute.TSLagMaker
 
deltaTime() - Method in enum weka.filters.supervised.attribute.TSLagMaker.Periodicity
 
deltaTime() - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Get the delta time of the periodicity being managed
determinePeriodicity(Instances, String, TSLagMaker.Periodicity) - Static method in class weka.filters.supervised.attribute.TSLagMaker
Utility method that uses heuristics to identify the periodicity of the data with respect to a time stamp.
disconnectionNotification(String, Object) - Method in class weka.gui.beans.TimeSeriesForecasting
Notify this object that it has been deregistered as a listener with a source with respect to the supplied event name

E

enableDateDerivedPeriodics(boolean) - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Set the enabled/disabled status of date-derived periodic panel and its associated widgets.
encodeForecasterToBase64(WekaForecaster, Instances) - Static method in class weka.gui.beans.TimeSeriesForecasting
Encode the model and header into a base 64 string.
encodeForecasterToBase64(WekaForecaster, Instances) - Static method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Encode the model and header into a base 64 string.
ErrorBasedConfidenceIntervalEstimator - Class in weka.classifiers.timeseries.core
Class that computes confidence intervals for a time series forecaster using errors computed on the training data.
ErrorBasedConfidenceIntervalEstimator() - Constructor for class weka.classifiers.timeseries.core.ErrorBasedConfidenceIntervalEstimator
 
ErrorModule - Class in weka.classifiers.timeseries.eval
Superclass of error-based evaluation modules.
ErrorModule() - Constructor for class weka.classifiers.timeseries.eval.ErrorModule
 
eval(Date, CustomPeriodicTest.TestPart) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Evaluate the supplied date against this bound.
evaluate(Date) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest
Evaluate the supplied date with respect to this custom periodic test interval
evaluateForecaster(TSForecaster, PrintStream...) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Evaluate the supplied forecaster.
evaluateForecaster(TSForecaster, boolean, PrintStream...) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Evaluate a forecaster on training and/or test data.
evaluateForecaster(TSForecaster, String[]) - Static method in class weka.classifiers.timeseries.eval.TSEvaluation
Evaluate the supplied forecaster using the supplied command-line options.
evaluateForInstance(List<NumericPrediction>, Instance) - Method in class weka.classifiers.timeseries.eval.DACModule
Evaluate the given forecast(s) with respect to the given test instance.
evaluateForInstance(List<NumericPrediction>, Instance) - Method in class weka.classifiers.timeseries.eval.ErrorModule
Evaluate the given forecast(s) with respect to the given test instance.
evaluateForInstance(List<NumericPrediction>, Instance) - Method in class weka.classifiers.timeseries.eval.RAEModule
Evaluate the given forecast(s) with respect to the given test instance.
evaluateForInstance(List<NumericPrediction>, Instance) - Method in class weka.classifiers.timeseries.eval.RRSEModule
Evaluate the given forecast(s) with respect to the given test instance.
evaluateForInstance(List<NumericPrediction>, Instance) - Method in class weka.classifiers.timeseries.eval.TSEvalModule
Evaluate the given forecast(s) with respect to the given test instance.
eventGeneratable(String) - Method in class weka.gui.beans.TimeSeriesForecasting
Returns true, if at the current time, the named event could be generated.
excludeSeasonalCorrectionTipText() - Method in class weka.classifiers.timeseries.HoltWinters
Tip text for this property
excludeTrendCorrection() - Method in class weka.classifiers.timeseries.HoltWinters
Tip text for this property
ExplorerTSPanel - Class in weka.classifiers.timeseries.gui.explorer
GUI class that provides a time series forecasting plugin tab for the Weka Explorer.
ExplorerTSPanel() - Constructor for class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
Constructor

F

fillWithMissingTipText() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Returns the tip text for this property
forecast(int, PrintStream...) - Method in class weka.classifiers.timeseries.AbstractForecaster
Produce a forecast for the target field(s).
forecast(int, Instances, PrintStream...) - Method in interface weka.classifiers.timeseries.core.OverlayForecaster
Produce a forecast for the target field(s).
forecast() - Method in class weka.classifiers.timeseries.HoltWinters
Generates a one-step ahead forecast.
forecast(int, PrintStream...) - Method in interface weka.classifiers.timeseries.TSForecaster
Produce a forecast for the target field(s).
forecast(int, PrintStream...) - Method in class weka.classifiers.timeseries.WekaForecaster
Produce a forecast for the target field(s).
forecast(int, Instances, PrintStream...) - Method in class weka.classifiers.timeseries.WekaForecaster
Produce a forecast for the target field(s).
ForecastingPanel - Class in weka.classifiers.timeseries.gui
Main GUI panel for the forecasting environment.
ForecastingPanel(LogPanel, boolean) - Constructor for class weka.classifiers.timeseries.gui.ForecastingPanel
Constructor.
ForecastingPanel(LogPanel, boolean, boolean, boolean) - Constructor for class weka.classifiers.timeseries.gui.ForecastingPanel
Constructor

G

getAddAMIndicator() - Method in class weka.filters.supervised.attribute.TSLagMaker
Return true if an AM indicator attribute is to be created.
getAddDayOfMonth() - Method in class weka.filters.supervised.attribute.TSLagMaker
Return true if a day of the month attribute is to be created.
getAddDayOfWeek() - Method in class weka.filters.supervised.attribute.TSLagMaker
Return true if a day of the week attribute is to be created.
getAddMonthOfYear() - Method in class weka.filters.supervised.attribute.TSLagMaker
Returns true if a month of the year attribute is to be created.
getAddNumDaysInMonth() - Method in class weka.filters.supervised.attribute.TSLagMaker
Return true if a num days in the month attribute is to be created.
getAddQuarterOfYear() - Method in class weka.filters.supervised.attribute.TSLagMaker
Returns true if a quarter attribute is to be created.
getAddWeekendIndicator() - Method in class weka.filters.supervised.attribute.TSLagMaker
Returns true if a weekend indicator attribute is to be created.
getAdjustForTrends() - Method in class weka.filters.supervised.attribute.TSLagMaker
Returns true if we are adjusting for trends via a real or artificial time stamp.
getAdjustForVariance() - Method in class weka.filters.supervised.attribute.TSLagMaker
Returns true if we are adjusting for variance by taking the log of the target(s).
getAlgorithmName() - Method in interface weka.classifiers.timeseries.TSForecaster
Provides a short name that describes the underlying algorithm in some way.
getAlgorithmName() - Method in class weka.classifiers.timeseries.WekaForecaster
Provides a short name that describes the underlying algorithm in some way.
getArtificialTimeStartOffset() - Method in class weka.gui.beans.TimeSeriesForecasting
Get the offset, from the value associated with the last training instance, for the artificial time stamp.
getArtificialTimeStartOffset() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Get the offset, from the value associated with the last training instance, for the artificial time stamp.
getArtificialTimeStartValue() - Method in class weka.filters.supervised.attribute.TSLagMaker
Returns the current value of the artificial time stamp.
getAttributeIndices() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Get the current range selection
getAverageConsecutiveLongLags() - Method in class weka.filters.supervised.attribute.TSLagMaker
Returns true if consecutive long lagged variables are to be averaged.
getAverageLagsAfter() - Method in class weka.filters.supervised.attribute.TSLagMaker
Return the point after which long lagged variables will be averaged.
getBaseClassifier() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Get the underlying Weka classifier that will be used to make the predictions
getBaseForecaster() - Method in class weka.classifiers.timeseries.WekaForecaster
Get the base Weka regression scheme being used to make forecasts
getBeanDescriptor() - Method in class weka.gui.beans.TimeSeriesForecastingBeanInfo
Get the bean descriptor for this bean
getCalculateConfIntervalsForForecasts() - Method in interface weka.classifiers.timeseries.core.ConfidenceIntervalForecaster
Return the number of steps for which confidence intervals will be computed.
getCalculateConfIntervalsForForecasts() - Method in class weka.classifiers.timeseries.WekaForecaster
Return the number of steps for which confidence intervals will be computed.
getCapabilities() - Method in class weka.classifiers.timeseries.core.TimeSeriesTranslate
Returns the Capabilities of this filter.
getCapabilities() - Method in class weka.filters.supervised.attribute.TSLagMaker
Returns the Capabilities of this filter.
getConfidenceLevel() - Method in interface weka.classifiers.timeseries.core.ConfidenceIntervalForecaster
Get the confidence level in use for computing confidence intervals.
getConfidenceLevel() - Method in class weka.classifiers.timeseries.core.ErrorBasedConfidenceIntervalEstimator
Get the confidence level in use
getConfidenceLevel() - Method in class weka.classifiers.timeseries.WekaForecaster
Get the confidence level in use for computing confidence intervals.
getConfidenceLimitsForTarget(String, double, int) - Method in class weka.classifiers.timeseries.core.ErrorBasedConfidenceIntervalEstimator
Get the confidence limits (upper and lower bounds) for the named target at the given step number
getConfidenceOffsets(double, List<List<NumericPrediction>>) - Method in class weka.classifiers.timeseries.core.ErrorBasedConfidenceIntervalEstimator
Get the confidence bound offsets for each target at the supplied confidence level
getCurrentTimeStampValue() - Method in class weka.filters.supervised.attribute.TSLagMaker
Returns the current (i.e.
getCustomEditorForStep() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Get the fully qualified name of the GUI editor for this step
getCustomizeDateDerivedPeriodics() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Returns true if the date-derived periodics check box is selected.
getCustomName() - Method in class weka.gui.beans.TimeSeriesForecasting
Get the custom (descriptive) name for this bean (if one has been set)
getCustomPeriodics() - Method in class weka.filters.supervised.attribute.TSLagMaker
Get the date-derived custom periodic attributes in use.
getDateTimeStampFinal() - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Get the last date timestamp value in the batch training data
getDateTimeStampInitial() - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Get the first date time stamp value in the batch training data
getDayString() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Get the day of the week as a string.
getDefaultDriver() - Static method in class weka.classifiers.timeseries.eval.graph.GraphDriver
Get the default graph driver (currently uses the JFreeChart library)
getDefaultSettings() - Method in class weka.gui.knowledgeflow.TimeSeriesPerspective
 
getDefinition() - Method in class weka.classifiers.timeseries.eval.DACModule
Return the mathematical formula that this evaluation module computes.
getDefinition() - Method in class weka.classifiers.timeseries.eval.ErrorModule
Return the mathematical formula that this evaluation module computes.
getDefinition() - Method in class weka.classifiers.timeseries.eval.MAEModule
Return the mathematical formula that this evaluation module computes.
getDefinition() - Method in class weka.classifiers.timeseries.eval.MAPEModule
 
getDefinition() - Method in class weka.classifiers.timeseries.eval.MSEModule
Return the mathematical formula that this evaluation module computes.
getDefinition() - Method in class weka.classifiers.timeseries.eval.RAEModule
Return the mathematical formula that this evaluation module computes.
getDefinition() - Method in class weka.classifiers.timeseries.eval.RMSEModule
Return the mathematical formula that this evaluation module computes.
getDefinition() - Method in class weka.classifiers.timeseries.eval.RRSEModule
Return the mathematical formula that this evaluation module computes.
getDefinition() - Method in class weka.classifiers.timeseries.eval.TSEvalModule
Return the mathematical formula that this evaluation module computes.
getDeltaTime() - Method in class weka.filters.supervised.attribute.TSLagMaker
Return the difference between time values.
getDescription() - Method in class weka.classifiers.timeseries.eval.DACModule
Return the longer (single sentence) description of this evaluation module
getDescription() - Method in class weka.classifiers.timeseries.eval.ErrorModule
Return the longer (single sentence) description of this evaluation module
getDescription() - Method in class weka.classifiers.timeseries.eval.MAEModule
Return the longer (single sentence) description of this evaluation module
getDescription() - Method in class weka.classifiers.timeseries.eval.MAPEModule
 
getDescription() - Method in class weka.classifiers.timeseries.eval.MSEModule
Return the longer (single sentence) description of this evaluation module
getDescription() - Method in class weka.classifiers.timeseries.eval.RAEModule
Return the longer (single sentence) description of this evaluation module
getDescription() - Method in class weka.classifiers.timeseries.eval.RMSEModule
Return the longer (single sentence) description of this evaluation module
getDescription() - Method in class weka.classifiers.timeseries.eval.RRSEModule
Return the longer (single sentence) description of this evaluation module
getDescription() - Method in class weka.classifiers.timeseries.eval.TSEvalModule
Return the longer (single sentence) description of this evaluation module
getDriver(String) - Static method in class weka.classifiers.timeseries.eval.graph.GraphDriver
Factory method for obtaining a named graph driver for producing graphs
getEncodedForecaster() - Method in class weka.gui.beans.TimeSeriesForecasting
Gets the base 64 encoded forecaster
getEncodedForecaster() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Gets the base 64 encoded forecaster
getErrorsForTarget(String) - Method in class weka.classifiers.timeseries.eval.ErrorModule
Get a list of the errors for the supplied target
getEvalName() - Method in class weka.classifiers.timeseries.eval.DACModule
Return the short identifying name of this evaluation module
getEvalName() - Method in class weka.classifiers.timeseries.eval.ErrorModule
Return the short identifying name of this evaluation module
getEvalName() - Method in class weka.classifiers.timeseries.eval.MAEModule
Return the short identifying name of this evaluation module
getEvalName() - Method in class weka.classifiers.timeseries.eval.MAPEModule
 
getEvalName() - Method in class weka.classifiers.timeseries.eval.MSEModule
Return the short identifying name of this evaluation module
getEvalName() - Method in class weka.classifiers.timeseries.eval.RAEModule
Return the short identifying name of this evaluation module
getEvalName() - Method in class weka.classifiers.timeseries.eval.RMSEModule
Return the short identifying name of this evaluation module
getEvalName() - Method in class weka.classifiers.timeseries.eval.RRSEModule
Return the short identifying name of this evaluation module
getEvalName() - Method in class weka.classifiers.timeseries.eval.TSEvalModule
Return the short identifying name of this evaluation module
getEvaluateOnTestData() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Get whether evaluation is to be performed on the test data.
getEvaluateOnTrainingData() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Get whether evaluation is to be performed on the training data
getEvaluationModules() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Get the evaluation modules in use
getEventSetDescriptors() - Method in class weka.gui.beans.TimeSeriesForecastingBeanInfo
 
getExcludeSeasonalCorrection() - Method in class weka.classifiers.timeseries.HoltWinters
Get whether to exclude the seasonal correction
getExcludeTrendCorrection() - Method in class weka.classifiers.timeseries.HoltWinters
Get whether to exclude the trend correction
getExplorer() - Method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
Unused - just returns null
getFieldName() - Method in class weka.classifiers.timeseries.gui.CustomPeriodicEditor
Get the name for this custom periodic test (will be used as the field name)
getFieldsToForecast() - Method in class weka.classifiers.timeseries.AbstractForecaster
Get the fields to forecast.
getFieldsToForecast() - Method in interface weka.classifiers.timeseries.TSForecaster
Get the fields to forecast.
getFieldsToLag() - Method in class weka.filters.supervised.attribute.TSLagMaker
Get the names of the fields to create lagged variables for.
getFieldsToLagAsString() - Method in class weka.filters.supervised.attribute.TSLagMaker
 
getFilename() - Method in class weka.gui.beans.TimeSeriesForecasting
Get the filename to load from.
getFilename() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Get the filename to load from.
getFillWithMissing() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Gets whether missing values should be used rather than removing instances where the translated value is not known (due to border effects).
getForecaster() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Get the WekaForecaster that is being configured.
getForecaster() - Method in class weka.gui.beans.TimeSeriesForecasting
Get the forecaster.
getForecaster(String) - Static method in class weka.gui.beans.TimeSeriesForecasting
Decodes and returns a forecasting model (list containing the forecaster and Instances object containing the structure of the data used to train the forecaster) from a base 64 string.
getForecaster() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Get the forecaster.
getForecaster(String) - Static method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Decodes and returns a forecasting model (list containing the forecaster and Instances object containing the structure of the data used to train the forecaster) from a base 64 string.
getForecastFuture() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Get whether future forecasts beyond the end of the training and/or test data will be generated.
getGraphFuturePredictions() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Returns true if the user has opted to graph future predictions
getGraphPanelSteps(TSForecaster, List<ErrorModule>, String, List<Integer>, int, Instances) - Method in class weka.classifiers.timeseries.eval.graph.GraphDriver
Return the graph encapsulated in a JPanel.
getGraphPanelSteps(TSForecaster, List<ErrorModule>, String, List<Integer>, int, Instances) - Method in class weka.classifiers.timeseries.eval.graph.JFreeChartDriver
Return the graph encapsulated in a JPanel.
getGraphPanelTargets(TSForecaster, ErrorModule, List<String>, int, int, Instances) - Method in class weka.classifiers.timeseries.eval.graph.GraphDriver
Return the graph encapsulated in a panel.
getGraphPanelTargets(TSForecaster, ErrorModule, List<String>, int, int, Instances) - Method in class weka.classifiers.timeseries.eval.graph.JFreeChartDriver
Return the graph encapsulated in a panel.
getGraphPredictionsAtStep() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Get the step number to graph all the targets at.
getGraphTargetForSteps() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Returns true if the user has opted to graph a target at specified steps
getGraphTargetForStepsStepList() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
If the user has opted to graph a target a various steps, then this method returns the list of steps that they have selected.
getGraphTargetForStepsTarget() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Return the target that is to be graphed at various steps
getHoldoutSetSize() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Gets the size of the holdout set.
getHorizon() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Get the horizon (i.e.
getHorizonValue() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Get the value in the horizon spinner (i.e.
getImageFromChart(JPanel, int, int) - Method in class weka.classifiers.timeseries.eval.graph.GraphDriver
Get an image representation of the supplied chart.
getImageFromChart(JPanel, int, int) - Method in class weka.classifiers.timeseries.eval.graph.JFreeChartDriver
Get an image representation of the supplied chart.
getIncludePowersOfTime() - Method in class weka.filters.supervised.attribute.TSLagMaker
Get whether to include powers of time in the transformed data
getIncludeTimeLagProducts() - Method in class weka.filters.supervised.attribute.TSLagMaker
Get whether to include products between time and the lagged variables
getIncomingConnectionTypes() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
 
getInstanceRange() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Gets the number of instances forward to translate values between.
getInvertSelection() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Get whether the supplied columns are to be removed or kept
getLabel() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest
Get the optional label for this interval.
getLagRange() - Method in class weka.filters.supervised.attribute.TSLagMaker
Get the ranges used to fine tune lag selection
getLowerTest() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest
Get the lower bound test
getMaxLag() - Method in class weka.filters.supervised.attribute.TSLagMaker
Get the maximum lag to create.
getMinLag() - Method in class weka.filters.supervised.attribute.TSLagMaker
Get the minimum lag to create.
getMinRequiredTrainingPoints() - Method in class weka.classifiers.timeseries.HoltWinters
Return the minimum number of training/priming data points required before a forecast can be made
getMinRequiredTrainingPoints() - Method in interface weka.classifiers.timeseries.PrimingDataLearner
Return the minimum number of training/priming data points required before a forecast can be made
getModule(String) - Static method in class weka.classifiers.timeseries.eval.TSEvalModule
Factory method for obtaining a named evaluation module.
getModuleList() - Static method in class weka.classifiers.timeseries.eval.TSEvalModule
Gets a list of known evaluation modules.
getMonthString() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Get the month as a String.
getNumConsecutiveLongLagsToAverage() - Method in class weka.filters.supervised.attribute.TSLagMaker
Get the number of consecutive long lagged variables to average.
getNumStepsToForecast() - Method in class weka.gui.beans.TimeSeriesForecasting
Get the number of time steps to forecast beyond the end of the incoming priming data.
getNumStepsToForecast() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Get the number of time steps to forecast beyond the end of the incoming priming data.
getOptions() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Gets the current settings of the filter.
getOptions() - Method in class weka.classifiers.timeseries.HoltWinters
 
getOptions() - Method in class weka.classifiers.timeseries.WekaForecaster
Gets the current settings of this Forecaster.
getOptions() - Method in class weka.filters.supervised.attribute.TSLagMaker
Gets the current settings of the LagMaker.
getOutgoingConnectionTypes() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
 
getOutputFuturePredictions() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Returns true if the user has opted to output future predictions
getOutputPredictionsAtStep() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Returns at which step to output predictions.
getOutputPredictionsTarget() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Get the selected target to output predictions for.
getOverlayFields() - Method in interface weka.classifiers.timeseries.core.OverlayForecaster
Get a comma-separated list of fields that considered to be overlay fields
getOverlayFields() - Method in class weka.classifiers.timeseries.WekaForecaster
Get a comma-separated list of fields that considered to be overlay fields
getOverlayFields() - Method in class weka.filters.supervised.attribute.TSLagMaker
Get overlay fields
getPanelFutureForecast(TSForecaster, List<List<NumericPrediction>>, List<String>, Instances) - Method in class weka.classifiers.timeseries.eval.graph.GraphDriver
Return the graph encapsulated in a JPanel
getPanelFutureForecast(TSForecaster, List<List<NumericPrediction>>, List<String>, Instances) - Method in class weka.classifiers.timeseries.eval.graph.JFreeChartDriver
Return the graph encapsulated in a JPanel
getPeriodicity() - Method in class weka.filters.supervised.attribute.TSLagMaker
Gets the Periodicity representing the time stamp in use for this lag maker.
getPeriodicity() - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Get periodicity being managed
getPerspectiveIcon() - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
Get the icon for this perspective.
getPerspectiveTipText() - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
Get the tool tip text for this perspective.
getPerspectiveTitle() - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
Get the title of this perspective
getPredictionsForAllTargets() - Method in class weka.classifiers.timeseries.eval.ErrorModule
Gets the predictions for all targets
getPredictionsForTarget(String) - Method in class weka.classifiers.timeseries.eval.ErrorModule
Get a list of predictions (plus actuals if known) for the supplied target
getPredictionsForTestData(int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Get predictions for all targets for the specified step number on the test data
getPredictionsForTrainingData(int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Get predictions for all targets for the specified step number on the training data
getPreviousActual() - Method in class weka.classifiers.timeseries.eval.RAEModule
Get the actual target values from the immediately preceding time step.
getPreviousActual() - Method in class weka.classifiers.timeseries.eval.RRSEModule
Get the actual target values from the immediately preceding time step.
getPreviousState() - Method in interface weka.classifiers.timeseries.core.StateDependentPredictor
Get the last set state of the model.
getPreviousState() - Method in interface weka.classifiers.timeseries.TSForecaster
Get the last set state of the model.
getPreviousState() - Method in class weka.classifiers.timeseries.WekaForecaster
Get the last set state of the model.
getPrimaryPeriodicFieldName() - Method in class weka.filters.supervised.attribute.TSLagMaker
The name of the primary periodic attribute or null if one hasn't been specified.
getPrimeForTestDataWithTestData() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Gets whether evaluation for the test data will begin by priming with the first x instances from the test data and then forecasting from step x + 1.
getPrimeWindowSize() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Get the size of the priming window - i.e.
getRebuildForecaster() - Method in class weka.gui.beans.TimeSeriesForecasting
Get whether the forecaster will be rebuilt/re-estimated on the incoming data.
getRebuildForecaster() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Get whether the forecaster will be rebuilt/re-estimated on the incoming data.
getRemoveLeadingInstancesWithUnknownLagValues() - Method in class weka.filters.supervised.attribute.TSLagMaker
Get whether to drop instances at the start of the transformed data where lag values are unknown/missing
getRevision() - Method in class weka.classifiers.timeseries.core.TimeSeriesTranslate
Returns the revision string.
getSaveFilename() - Method in class weka.gui.beans.TimeSeriesForecasting
Get the name of the file to save the forecasting model to if the user has opted to rebuild the forecaster using the incoming data.
getSaveFilename() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Get the name of the file to save the forecasting model to if the user has opted to rebuild the forecaster using the incoming data.
getSeasonalSmoothingFactor() - Method in class weka.classifiers.timeseries.HoltWinters
Get the seasonal smoothing factor
getSeasonCycleLength() - Method in class weka.classifiers.timeseries.HoltWinters
Get the length of a "year", i.e.
getSelectedTimeStampField() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Get the selected time stamp field name.
getSkipEntries() - Method in class weka.filters.supervised.attribute.TSLagMaker
Get a list of time units to be 'skipped' - i.e.
getTabTitle() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Get a title for displaying in the tab that will hold this panel
getTabTitle() - Method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
Get the title for this tab
getTabTitle() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Get the title for this panel suitable for displaying in a tab.
getTabTitleToolTip() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Get the tool tip for this configuration panel
getTabTitleToolTip() - Method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
Get the tool tip for this tab
getTabTitleToolTip() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Get the tool tip for this panel.
getTargetFields() - Method in class weka.classifiers.timeseries.eval.TSEvalModule
Get the list of target field names.
getTestBeingEdited() - Method in class weka.classifiers.timeseries.gui.CustomPeriodicTestEditor
Get the test being edited
getTestData() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Get the test data (if any)
getTimeStampField() - Method in class weka.filters.supervised.attribute.TSLagMaker
Get the name of the time stamp field.
getTrainingData() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Get the training data (if any)
getTransformedData(Instances) - Method in class weka.filters.supervised.attribute.TSLagMaker
Creates a transformed data set based on the user's settings
getTrendSmoothingFactor() - Method in class weka.classifiers.timeseries.HoltWinters
Get the trend smoothing factor
getTSLagMaker() - Method in interface weka.classifiers.timeseries.core.TSLagUser
Get the TSLagMaker that we are using.
getTSLagMaker() - Method in class weka.classifiers.timeseries.WekaForecaster
Get the TSLagMaker that we are using.
getUpperTest() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest
Get the upper bound test
getValueSmoothingFactor() - Method in class weka.classifiers.timeseries.HoltWinters
Get the value smoothing factor
getVisual() - Method in class weka.gui.beans.TimeSeriesForecasting
Gets the visual appearance of this wrapper bean
globalInfo() - Method in class weka.classifiers.timeseries.core.TimeSeriesTranslate
Returns a string describing this classifier
globalInfo() - Method in class weka.classifiers.timeseries.HoltWinters
Description of this forecaster.
globalInfo() - Method in class weka.filters.supervised.attribute.TSLagMaker
 
globalInfo() - Method in class weka.gui.beans.TimeSeriesForecasting
Global about information for this component.
GraphDriver - Class in weka.classifiers.timeseries.eval.graph
Abstract base class for graph drivers.
GraphDriver() - Constructor for class weka.classifiers.timeseries.eval.graph.GraphDriver
 
graphFutureForecastOnTesting(GraphDriver, TSForecaster, List<String>) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Graph historical and future forecasted values using a graph driver for the test.
graphFutureForecastOnTraining(GraphDriver, TSForecaster, List<String>) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Graph historical and future forecasted values using a graph driver for the training data.
graphPredictionsForStepsOnTesting(GraphDriver, TSForecaster, String, List<Integer>, int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Graph predicted values at the given step-ahead levels for a single target on the test data.
graphPredictionsForStepsOnTraining(GraphDriver, TSForecaster, String, List<Integer>, int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Graph predicted values at the given step-ahead levels for a single target on the training data.
graphPredictionsForTargetsOnTesting(GraphDriver, TSForecaster, List<String>, int, int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Graph predicted values at the given step-ahead level for the supplied targets on the test data.
graphPredictionsForTargetsOnTraining(GraphDriver, TSForecaster, List<String>, int, int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Graph predicted values at the given step-ahead level for the supplied targets on the training data.

H

HoltWinters - Class in weka.classifiers.timeseries
Class implementing the Holt-Winters triple exponential smoothing method for time series forecasting.
HoltWinters() - Constructor for class weka.classifiers.timeseries.HoltWinters
 

I

ID - Static variable in class weka.gui.knowledgeflow.TimeSeriesPerspective.TimeSeriesDefaults
 
IncrementallyPrimeable - Interface in weka.classifiers.timeseries.core
An interface to a forecaster that can be primed incrementally.
incrementArtificialTimeValue(int) - Method in class weka.filters.supervised.attribute.TSLagMaker
Increment the artificial time value with the supplied incrememt value.
input(Instance) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Input an instance for filtering.
input(Instance) - Method in class weka.filters.supervised.attribute.TSLagMaker
 
inputOneTemporarily(Instance) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Input a single instance for filtering without placing it into the history queue.
insertMissing(Instances, Attribute, TSLagMaker.PeriodicityHandler, String, List<String>) - Static method in class weka.classifiers.timeseries.core.Utils
Check to see if there are any instances (time steps) that are missing entirely from the data (and are not in the skip list).
instanceRangeTipText() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Returns the tip text for this property
invertSelectionTipText() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Returns the tip text for this property
isBusy() - Method in class weka.gui.beans.TimeSeriesForecasting
Returns true if.
isDateBased() - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Returns true if the periodicity being managed is date timestamp-based
isEmpty(String) - Static method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Utility method to check if a String is null or empty ("").
isEnabledCustomizeDateDerivedPeriodics() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Returns true if date-derived periodics is enabled
isProducingConfidenceIntervals() - Method in interface weka.classifiers.timeseries.core.ConfidenceIntervalForecaster
Returns true if this forecaster is computing confidence limits for some or all of its future forecasts (i.e.
isProducingConfidenceIntervals() - Method in class weka.classifiers.timeseries.WekaForecaster
Returns true if this forecaster is computing confidence limits for some or all of its future forecasts (i.e.
isUpper() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Returns true if this is the upper bound.
isUsingAnArtificialTimeIndex() - Method in class weka.filters.supervised.attribute.TSLagMaker
Returns true if an artificial time index is in use.
isUsingANativeTimeStamp() - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Returns true if the forecaster is using a time stamp defined in the data (rather than no time stamp or an artificially generated one)
isUsingCustomLags() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Returns true if the user has opted to customize the lags.
isUsingOverlayData() - Method in interface weka.classifiers.timeseries.core.OverlayForecaster
Returns true if this forecaster has been trained with data containing overlay fields, and thus will expect to be provided with future values for these fields when making a forecast.
isUsingOverlayData() - Method in class weka.classifiers.timeseries.WekaForecaster
Returns true if overlay data has been used to train this forecaster, and thus is expected to be supplied for future time steps when making a forecast.

J

JFreeChartDriver - Class in weka.classifiers.timeseries.eval.graph
A Graph driver that uses the JFreeChart library.
JFreeChartDriver() - Constructor for class weka.classifiers.timeseries.eval.graph.JFreeChartDriver
 

L

listOptions() - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Returns an enumeration describing the available options.
listOptions() - Method in class weka.classifiers.timeseries.HoltWinters
 
listOptions() - Method in class weka.classifiers.timeseries.WekaForecaster
Returns an enumeration describing the available options.
listOptions() - Method in class weka.filters.supervised.attribute.TSLagMaker
Returns an enumeration describing the available options.
loadBaseModel(String) - Method in interface weka.classifiers.timeseries.TSForecaster
Load serialized classifier
loadBaseModel(String) - Method in class weka.classifiers.timeseries.WekaForecaster
Load serialized classifier
loadSerializedModel(String) - Method in interface weka.classifiers.timeseries.core.BaseModelSerializer
De-serialize model
loadSerializedState(String) - Method in interface weka.classifiers.timeseries.core.StateDependentPredictor
Load serialized model state
loadSerializedState(String) - Method in interface weka.classifiers.timeseries.TSForecaster
Load serialized model state
loadSerializedState(String) - Method in class weka.classifiers.timeseries.WekaForecaster
Load serialized model state

M

m_boundOperator - Variable in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
the operator for this bound
m_day_of_month - Variable in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
 
m_day_of_yr - Variable in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
 
m_hour_of_day - Variable in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
 
m_min_of_hour - Variable in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
 
m_second - Variable in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
 
m_week_of_month - Variable in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
 
m_week_of_yr - Variable in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
 
m_year - Variable in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
date fields
MAEModule - Class in weka.classifiers.timeseries.eval
An evaluation module that computes the mean absolute error of forecasted values.
MAEModule() - Constructor for class weka.classifiers.timeseries.eval.MAEModule
 
main(String[]) - Static method in class weka.classifiers.timeseries.core.CustomPeriodicTest
Main method for testing this class
main(String[]) - Static method in class weka.classifiers.timeseries.core.TimeSeriesTranslate
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Tests the Weka advanced config panel from the command line.
main(String[]) - Static method in class weka.classifiers.timeseries.gui.CustomPeriodicEditor
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.timeseries.gui.CustomPeriodicTestEditor
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
Main method for testing this class.
main(String[]) - Static method in class weka.classifiers.timeseries.gui.ForecastingPanel
Tests the Weka Forecasting panel from the command line.
main(String[]) - Static method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Tests the simple config panel from the command line.
main(String[]) - Static method in class weka.classifiers.timeseries.HoltWinters
Main method for running this class
main(String[]) - Static method in class weka.classifiers.timeseries.WekaForecaster
Main method for running this class from the command line
main(String[]) - Static method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
Main method for testing this class
makeCopy(TSForecaster) - Static method in class weka.classifiers.timeseries.AbstractForecaster
Creates a deep copy of the given forecaster using serialization.
MAPEModule - Class in weka.classifiers.timeseries.eval
Computes the mean absolute percentage error
MAPEModule() - Constructor for class weka.classifiers.timeseries.eval.MAPEModule
 
MSEModule - Class in weka.classifiers.timeseries.eval
An evaluation module that computes the mean squared error of forecasted values.
MSEModule() - Constructor for class weka.classifiers.timeseries.eval.MSEModule
 

O

okPressed() - Method in class weka.gui.knowledgeflow.steps.TimeSeriesForecastingStepEditorDialog
 
okToBeActive() - Method in class weka.gui.knowledgeflow.TimeSeriesPerspective
 
OverlayForecaster - Interface in weka.classifiers.timeseries.core
Interface to a forecaster that has been trained with data containing "overlay" attributes.

P

postExecution() - Method in class weka.classifiers.timeseries.AbstractForecaster
 
preExecution() - Method in class weka.classifiers.timeseries.AbstractForecaster
 
primeForecaster(Instances) - Method in class weka.classifiers.timeseries.AbstractForecaster
Supply the (potentially) trained model with enough historical data, up to and including the current time point, in order to produce a forecast.
primeForecaster(Instances) - Method in interface weka.classifiers.timeseries.TSForecaster
Supply the (potentially) trained model with enough historical data, up to and including the current time point, in order to produce a forecast.
primeForecaster(Instances) - Method in class weka.classifiers.timeseries.WekaForecaster
Supply the (potentially) trained model with enough historical data, up to and including the current time point, in order to produce a forecast.
primeForecasterIncremental(Instance) - Method in interface weka.classifiers.timeseries.core.IncrementallyPrimeable
Update the priming information incrementally, i.e.
primeForecasterIncremental(Instance) - Method in class weka.classifiers.timeseries.WekaForecaster
Update the priming information incrementally, i.e.
PrimingDataLearner - Interface in weka.classifiers.timeseries
Interface to a forecaster that learns from the priming data
printFutureTestForecast(TSForecaster) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Print the target values from the test data followed by the future forecast from the end of the test data.
printFutureTrainingForecast(TSForecaster) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Print the forecasted values (for all targets) beyond the end of the training data
printPredictionsForTestData(String, String, int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Print the predictions for a given target at a given step-ahead level on the training data.
printPredictionsForTestData(String, String, int, int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Print the predictions for a given target at a given step-ahead level from a given offset on the training data.
printPredictionsForTrainingData(String, String, int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Print the predictions for a given target at a given step-ahead level on the training data.
printPredictionsForTrainingData(String, String, int, int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Print the predictions for a given target at a given step-ahead level from a given offset on the training data.
printUsage() - Static method in class weka.classifiers.timeseries.HoltWinters
Print usage information
processIncoming(Data) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
 
processInstance(Instance, boolean, boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
 
processInstance(Instance, boolean, boolean, boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Process an instance in the original format and produce a transformed instance as output.
processInstancePreview(Instance, boolean, boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
 

R

RAEModule - Class in weka.classifiers.timeseries.eval
An evaluation module that computes the relative absolute error of forecasted values.
RAEModule() - Constructor for class weka.classifiers.timeseries.eval.RAEModule
 
remapDateTimeStamp(Instance, Instance, String) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Remaps a date timestamp to an integer starting (from the first time stamp seen in the data) at 0.
removeInstanceListener(InstanceListener) - Method in class weka.gui.beans.TimeSeriesForecasting
Deregister and remove a listener of InstanceEvents
removePropertyChangeListener(PropertyChangeListener) - Method in class weka.classifiers.timeseries.gui.CustomPeriodicTestEditor
Removes a PropertyChangeListener.
replaceMissing(Instances, List<String>, String, boolean, TSLagMaker.Periodicity, String, Object...) - Static method in class weka.classifiers.timeseries.core.Utils
Replace missing target values by interpolation.
requiresLog() - Method in class weka.gui.knowledgeflow.TimeSeriesPerspective
Requires a log when running in the Workbench application
reset() - Method in class weka.classifiers.timeseries.eval.ErrorModule
Reset this module
reset() - Method in class weka.classifiers.timeseries.eval.RAEModule
Reset this module
reset() - Method in class weka.classifiers.timeseries.eval.RRSEModule
Reset this module
reset() - Method in class weka.classifiers.timeseries.eval.TSEvalModule
Reset the module
reset() - Method in class weka.classifiers.timeseries.HoltWinters
 
reset() - Method in interface weka.classifiers.timeseries.PrimingDataLearner
Reset this forecaster ready to learn from a new set of priming data
reset() - Method in interface weka.classifiers.timeseries.TSForecaster
Reset this forecaster so that it is ready to construct a new model.
reset() - Method in class weka.classifiers.timeseries.WekaForecaster
Reset the forecaster.
reset() - Method in class weka.filters.supervised.attribute.TSLagMaker
Reset the lag maker.
RMSEModule - Class in weka.classifiers.timeseries.eval
An evaluation module that computes the root mean squared error of forecasted values.
RMSEModule() - Constructor for class weka.classifiers.timeseries.eval.RMSEModule
 
RRSEModule - Class in weka.classifiers.timeseries.eval
An evaluation module that computes the root relative squared error of forecasted values.
RRSEModule() - Constructor for class weka.classifiers.timeseries.eval.RRSEModule
 
run(Object, String[]) - Method in class weka.classifiers.timeseries.AbstractForecaster
Run the supplied object using the supplied options on the command line.
runForecaster(TSForecaster, String[]) - Method in class weka.classifiers.timeseries.AbstractForecaster
Run the supplied forecaster with the supplied options on the command line.
runForecaster(TSForecaster, String[]) - Method in interface weka.classifiers.timeseries.TSForecaster
Run the supplied forecaster with the supplied options on the command line.

S

saveBaseModel(String) - Method in interface weka.classifiers.timeseries.TSForecaster
Save underlying classifier
saveBaseModel(String) - Method in class weka.classifiers.timeseries.WekaForecaster
Save underlying classifier
saveChartToFile(JPanel, String, int, int) - Method in class weka.classifiers.timeseries.eval.graph.GraphDriver
Save a chart to a file.
saveChartToFile(JPanel, String, int, int) - Method in class weka.classifiers.timeseries.eval.graph.JFreeChartDriver
Save a chart to a file.
seasonalSmoothingFactorTipText() - Method in class weka.classifiers.timeseries.HoltWinters
Tip text for this property
seasonCycleLengthTipText() - Method in class weka.classifiers.timeseries.HoltWinters
Tip text for this property
serializeModel(String) - Method in interface weka.classifiers.timeseries.core.BaseModelSerializer
Serialize model
serializeState(String) - Method in interface weka.classifiers.timeseries.core.StateDependentPredictor
Serialize model state
serializeState(String) - Method in interface weka.classifiers.timeseries.TSForecaster
Serialize model state
serializeState(String) - Method in class weka.classifiers.timeseries.WekaForecaster
Serialize model state
setActive(boolean) - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
Make this perspective the active (visible) one in the KF
setAddAMIndicator(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set whether to create an AM indicator attribute.
setAddDayOfMonth(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set whether to create a day of the month attribute.
setAddDayOfWeek(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set whether to create a day of the week attribute.
setAddMonthOfYear(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set whether to create a month of the year attribute.
setAddNumDaysInMonth(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set whether to create a numeric attribute that holds the number of days in the month.
setAddQuarterOfYear(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set whether to create a quarter attribute.
setAddWeekendIndicator(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set whether to create a weekend indicator attribute.
setAdjustForTrends(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set whether to adjust for trends or not.
setAdjustForVariance(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set whether to adjust for variance in the data by taking the log of the target(s).
setAdvancedConfig(AdvancedConfigPanel) - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Set a reference to the advanced configuration panel.
setArtificialTimeStartOffset(String) - Method in class weka.gui.beans.TimeSeriesForecasting
Set the offset, from the value associated with the last training instance, for the artificial time stamp.
setArtificialTimeStartOffset(String) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Set the offset, from the value associated with the last training instance, for the artificial time stamp.
setArtificialTimeStartValue(double) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set the starting value for the artificial time stamp.
setAttributeIndices(String) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Set which attributes are to be copied (or kept if invert is true)
setAttributeIndicesArray(int[]) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Set which attributes are to be copied (or kept if invert is true)
setAverageConsecutiveLongLags(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Sets whether to average consecutive long lagged variables.
setAverageLagsAfter(int) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set at which point consecutive long lagged variables are to be averaged (default = 2, i.e.
setBaseForecaster(Classifier) - Method in class weka.classifiers.timeseries.WekaForecaster
Set the base Weka regression scheme to use.
setCalculateConfIntervalsForForecasts(int) - Method in interface weka.classifiers.timeseries.core.ConfidenceIntervalForecaster
Set the number of steps for which to compute confidence intervals for.
setCalculateConfIntervalsForForecasts(int) - Method in class weka.classifiers.timeseries.WekaForecaster
Set the number of steps for which to compute confidence intervals for.
setClipboard(TimeSeriesForecasting) - Static method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
Sets the knowledge flow's paste buffer equal to the supplied configured TimeSeriesForecasting component.
setConfidenceLevel(double) - Method in interface weka.classifiers.timeseries.core.ConfidenceIntervalForecaster
Set the confidence level for confidence intervals.
setConfidenceLevel(double) - Method in class weka.classifiers.timeseries.WekaForecaster
Set the confidence level for confidence intervals.
setCustomName(String) - Method in class weka.gui.beans.TimeSeriesForecasting
Set a custom (descriptive) name for this bean
setCustomPeriodics(Map<String, ArrayList<CustomPeriodicTest>>) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set the date-derived custom periodic fields to use/compute
setDateTimeStampFinal(long) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Set the last date timestamp value in the batch training data
setDateTimeStampInitial(long) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Set the first date time stamp value in the batch training data
setDayOfMonth(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Set the day of the month for this bound.
setDayOfWeek(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Set the day of the week for this bound.
setDayOfYear(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Set the day of the year for this bound.
setDeltaTime(double) - Method in enum weka.filters.supervised.attribute.TSLagMaker.Periodicity
 
setDeltaTime(double) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Set the delta time for the periodicity being managed
setEnabled(boolean) - Method in class weka.classifiers.timeseries.gui.CustomPeriodicTestEditor
Set the enabled status of all the GUI elements
setEncodedForecaster(String) - Method in class weka.gui.beans.TimeSeriesForecasting
Set the base 64 encoded forecaster.
setEncodedForecaster(String) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Set the base 64 encoded forecaster.
setEnvironment(Environment) - Method in class weka.gui.beans.TimeSeriesForecasting
Set environment variables to use.
setEnvironment(Environment) - Method in class weka.gui.beans.TimeSeriesForecastingCustomizer
Set the environment variables to use.
setEvaluateOnTestData(boolean) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Set whether to perform evaluation on the training data
setEvaluateOnTrainingData(boolean) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Set whether to perform evaluation on the training data
setEvaluationModules(String) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Set the evaluation modules to use/
setExcludeSeasonalCorrection(boolean) - Method in class weka.classifiers.timeseries.HoltWinters
Set whether to exclude the seasonal correction
setExcludeTrendCorrection(boolean) - Method in class weka.classifiers.timeseries.HoltWinters
Set whether to exclude the trend correction
setExplorer(Explorer) - Method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
Unused
setFieldName(String) - Method in class weka.classifiers.timeseries.gui.CustomPeriodicEditor
Set the name for this custom periodic test
setFieldsToForecast(String) - Method in class weka.classifiers.timeseries.AbstractForecaster
Set the names of the fields/attributes in the data to forecast.
setFieldsToForecast(String) - Method in interface weka.classifiers.timeseries.TSForecaster
Set the names of the fields/attributes in the data to forecast.
setFieldsToForecast(String) - Method in class weka.classifiers.timeseries.WekaForecaster
Set the names of the fields/attributes in the data to forecast.
setFieldsToLag(List<String>) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set the names of the fields to create lagged variables for
setFieldsToLagAsString(String) - Method in class weka.filters.supervised.attribute.TSLagMaker
 
setFilename(String) - Method in class weka.gui.beans.TimeSeriesForecasting
Set the filename to load from.
setFilename(File) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Set the filename to load from.
setFillWithMissing(boolean) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Sets whether missing values should be used rather than removing instances where the translated value is not known (due to border effects).
setForecaster(WekaForecaster) - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Set the WekaForecaster that is to be configured by this panel.
setForecastFuture(boolean) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Set whether we should generate a future forecast beyond the end of the training and/or test data.
setHorizon(int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Set the horizon - i.e.
setHorizon(int) - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Set the horizon (i.e.
setHourOfDay(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Set the hour of the day for this bound.
setIncludePowersOfTime(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set whether to include powers of time in the transformed data
setIncludeTimeLagProducts(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set whether to include products between time and the lagged variables
setInputFormat(Instances) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Sets the format of the input instances.
setInputFormat(Instances) - Method in class weka.classifiers.timeseries.core.TimeSeriesTranslate
Sets the format of the input instances.
setInputFormat(Instances) - Method in class weka.filters.supervised.attribute.TSLagMaker
 
setInstanceRange(int) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Sets the number of instances forward to translate values between.
setInstances(Instances) - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Set the instances that will be used in the training and evaluation of the forecaster
setInstances(Instances) - Method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
Set the working instances for this panel.
setInstances(Instances) - Method in class weka.classifiers.timeseries.gui.ForecastingPanel
Set the training instances to use
setInstances(Instances) - Method in class weka.classifiers.timeseries.gui.SimpleConfigPanel
Set the instances that will be used to train and/or test the forecaster.
setInstances(Instances) - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
Set instances (if the perspective accepts them)
setInstances(Instances) - Method in class weka.gui.knowledgeflow.TimeSeriesPerspective
 
setInvertSelection(boolean) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Set whether selected columns should be removed or kept.
setIsDateBased(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Set whether the periodicity being managed is date timestamp-based
setIsUpper(boolean) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Set whether this is the upper bound or not.
setLabel(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest
Set the label for this interval
setLagRange(String) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set ranges to fine tune lag selection.
setLoaded(boolean) - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
Tell this perspective whether or not it is part of the users perspectives toolbar in the KnowledgeFlow.
setLog(Logger) - Method in class weka.classifiers.timeseries.gui.explorer.ExplorerTSPanel
Set the logging object to use
setLog(Logger) - Method in class weka.classifiers.timeseries.gui.ForecastingPanel
Set the log to use
setLog(Logger) - Method in class weka.gui.beans.TimeSeriesForecasting
Set the logging object to use
setLog(Logger) - Method in class weka.gui.knowledgeflow.TimeSeriesPerspective
 
setMainKFPerspective(KnowledgeFlowApp.MainKFPerspective) - Method in class weka.gui.beans.TimeSeriesForecastingKFPerspective
Set a reference to the main KnowledgeFlow perspective - i.e.
setMaxLag(int) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set the maximum lag to create (default = 12, i.e.
setMinLag(int) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set the minimum lag to create (default = 1, i.e.
setMinuteOfHour(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Set the minute of the hour for this bound.
setMonth(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Set the month for this bound.
setNumConsecutiveLongLagsToAverage(int) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set the number of long lagged variables to average for each averaged variable created (default = 2, e.g.
setNumStepsToForecast(String) - Method in class weka.gui.beans.TimeSeriesForecasting
Set the number of time steps to forecast beyond the end of the incoming priming data.
setNumStepsToForecast(String) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Set the number of time steps to forecast beyond the end of the incoming priming data.
setObject(Object) - Method in class weka.gui.beans.TimeSeriesForecastingCustomizer
Set the object to edit
setOperator(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Set the operator for this bound
setOptions(String[]) - Method in class weka.classifiers.timeseries.core.AbstractTimeSeriesFilter
Parses a given list of options controlling the behaviour of this object.
setOptions(String[]) - Method in class weka.classifiers.timeseries.HoltWinters
 
setOptions(String[]) - Method in class weka.classifiers.timeseries.WekaForecaster
Set the options for the forecaster
setOptions(String[]) - Method in class weka.filters.supervised.attribute.TSLagMaker
Parses a given list of options.
setOverlayFields(String) - Method in interface weka.classifiers.timeseries.core.OverlayForecaster
Set the fields to consider as overlay fields
setOverlayFields(String) - Method in class weka.classifiers.timeseries.WekaForecaster
Set the fields to consider as overlay fields
setOverlayFields(List<String>) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set the names of fields in the data that are to be considered "overlay" fields - i.e.
setParentWindow(Window) - Method in class weka.gui.beans.TimeSeriesForecastingCustomizer
Set the Window that contains this customizer
setPeriodicity(TSLagMaker.Periodicity) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Set periodicity to manage
setPeriodicity(TSLagMaker.Periodicity) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set the periodicity for the data.
setPreviousState(Object) - Method in interface weka.classifiers.timeseries.core.StateDependentPredictor
Load state into model.
setPreviousState(List<Object>) - Method in interface weka.classifiers.timeseries.TSForecaster
Load state into model.
setPreviousState(List<Object>) - Method in class weka.classifiers.timeseries.WekaForecaster
Load state into model.
setPrimaryPeriodicFieldName(String) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set the name of a periodic attribute in the data.
setPrimeForTestDataWithTestData(boolean) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Set whether evaluation for test data should begin by priming with the first x test data instances and then forecasting from step x + 1.
setPrimeWindowSize(int) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Set the size of the priming window - i.e.
setRebuildForecaster(boolean) - Method in class weka.gui.beans.TimeSeriesForecasting
Set whether the forecaster should be rebuilt/re-estimated on the incoming data.
setRebuildForecaster(boolean) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Set whether the forecaster should be rebuilt/re-estimated on the incoming data.
setRebuildModelAfterEachTestForecastStep(boolean) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Set whether the forecasting model should be rebuilt after each forecasting step on the test data using both the training data and test data up to the current instance.
setRelativeRAEModule(RAEModule) - Method in class weka.classifiers.timeseries.eval.RAEModule
Set a RAEModule to use for the relative calculations - i.e.
setRelativeRRSEModule(RRSEModule) - Method in class weka.classifiers.timeseries.eval.RRSEModule
Set a RRSEModule to use for the relative calculations - i.e.
setRemoveLeadingInstancesWithUnknownLagValues(boolean) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set whether to drop instances at the start of the transformed data where lag values are unknown/missing
setSaveFilename(String) - Method in class weka.gui.beans.TimeSeriesForecasting
Set the name of the file to save the forecasting model out to if the user has opted to rebuild the forecaster using the incoming data.
setSaveFilename(File) - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
Set the name of the file to save the forecasting model out to if the user has opted to rebuild the forecaster using the incoming data.
setSeasonalSmoothingFactor(double) - Method in class weka.classifiers.timeseries.HoltWinters
Set the seasonal smoothing factor
setSeasonCycleLength(int) - Method in class weka.classifiers.timeseries.HoltWinters
Set the length of a "year", i.e.
setSecond(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Set the second for this bound.
setSkipEntries(String) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set the list of time units to be 'skipped' - i.e.
setSkipList(String, String) - Method in class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
Set a list of skip entries
setTargetFields(List<String>) - Method in class weka.classifiers.timeseries.eval.TSEvalModule
Set a list of target field names.
setTest(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest
Set the test as a String
setTestData(Instances) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Set the test data to use
setTestToEdit(CustomPeriodicTest) - Method in class weka.classifiers.timeseries.gui.CustomPeriodicTestEditor
Set the test to edit
setTimeSeriesModelListener(TimeSeriesPerspective.TimeSeriesModelListener) - Method in class weka.classifiers.timeseries.gui.ForecastingPanel
Set a listener that accepts WekaForecaster models.
setTimeStampField(String) - Method in class weka.filters.supervised.attribute.TSLagMaker
Set the name of the time stamp field in the data
setTrainingData(Instances) - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Set the training data to use
setTrendSmoothingFactor(double) - Method in class weka.classifiers.timeseries.HoltWinters
Set the trend smoothing factor
setTSLagMaker(TSLagMaker) - Method in interface weka.classifiers.timeseries.core.TSLagUser
Set the TSLagMaker to use.
setTSLagMaker(TSLagMaker) - Method in class weka.classifiers.timeseries.WekaForecaster
Set the TSLagMaker to use.
setValueSmoothingFactor(double) - Method in class weka.classifiers.timeseries.HoltWinters
Set the value smoothing factor
setVisual(BeanVisual) - Method in class weka.gui.beans.TimeSeriesForecasting
Sets the visual appearance of this wrapper bean
setWeekOfMonth(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Set the week of the month for this bound.
setWeekOfYear(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Set the week of the year for this bound.
setYear(String) - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Set the year for this bound.
SHOW_CLIPBOARD_POPUP - Static variable in class weka.gui.knowledgeflow.TimeSeriesPerspective.TimeSeriesDefaults
 
SHOW_CLIPBOARD_POPUP_KEY - Static variable in class weka.gui.knowledgeflow.TimeSeriesPerspective.TimeSeriesDefaults
 
SimpleConfigPanel - Class in weka.classifiers.timeseries.gui
Class that renders a simple configuration panel for configuring a time series forecaster.
SimpleConfigPanel(ForecastingPanel) - Constructor for class weka.classifiers.timeseries.gui.SimpleConfigPanel
Constructor
StateDependentPredictor - Interface in weka.classifiers.timeseries.core
An interface for state-dependent predictors.
stepInit() - Method in class weka.knowledgeflow.steps.TimeSeriesForecasting
 
stop() - Method in class weka.gui.beans.TimeSeriesForecasting
Stop the component from executing.
stringToList(String) - Static method in class weka.classifiers.timeseries.AbstractForecaster
A utility method for converting a List of Strings to a single comma separated String.

T

TimeSeriesForecasting - Class in weka.gui.beans
KnowledgeFlow component for producing a forecast using a time series forecasting model.
TimeSeriesForecasting() - Constructor for class weka.gui.beans.TimeSeriesForecasting
Constructor
TimeSeriesForecasting - Class in weka.knowledgeflow.steps
Knowledge Flow step that encapsulates a time series forecasting model and uses it to produce forecasts given incoming historical data.
TimeSeriesForecasting() - Constructor for class weka.knowledgeflow.steps.TimeSeriesForecasting
 
TimeSeriesForecastingBeanInfo - Class in weka.gui.beans
BeanInfo class for the TimeSeriesForecasting bean
TimeSeriesForecastingBeanInfo() - Constructor for class weka.gui.beans.TimeSeriesForecastingBeanInfo
 
TimeSeriesForecastingCustomizer - Class in weka.gui.beans
Customizer for the TimeSeriesForecasting bean
TimeSeriesForecastingCustomizer() - Constructor for class weka.gui.beans.TimeSeriesForecastingCustomizer
Constructor
TimeSeriesForecastingKFPerspective - Class in weka.gui.beans
KnowledgeFlow perspective provides the time series environment.
TimeSeriesForecastingKFPerspective() - Constructor for class weka.gui.beans.TimeSeriesForecastingKFPerspective
Constructor
TimeSeriesForecastingStepEditorDialog - Class in weka.gui.knowledgeflow.steps
Editor dialog for the time series forecasting step
TimeSeriesForecastingStepEditorDialog() - Constructor for class weka.gui.knowledgeflow.steps.TimeSeriesForecastingStepEditorDialog
 
TimeSeriesPerspective - Class in weka.gui.knowledgeflow
Knowledge Flow Perspective for the time series forecasting environment
TimeSeriesPerspective() - Constructor for class weka.gui.knowledgeflow.TimeSeriesPerspective
 
TimeSeriesPerspective.TimeSeriesDefaults - Class in weka.gui.knowledgeflow
 
TimeSeriesPerspective.TimeSeriesDefaults() - Constructor for class weka.gui.knowledgeflow.TimeSeriesPerspective.TimeSeriesDefaults
 
TimeSeriesPerspective.TimeSeriesModelListener - Interface in weka.gui.knowledgeflow
 
TimeSeriesTranslate - Class in weka.classifiers.timeseries.core
Re-written version of weka.filters.unsupervised.attribute.TimeSeriesTranslate.
TimeSeriesTranslate() - Constructor for class weka.classifiers.timeseries.core.TimeSeriesTranslate
 
toString() - Method in enum weka.classifiers.timeseries.core.CustomPeriodicTest.Operator
 
toString() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest.TestPart
Provides a textual representation of this test bound
toString() - Method in class weka.classifiers.timeseries.core.CustomPeriodicTest
Returns a textual description of this test
toString() - Method in class weka.classifiers.timeseries.eval.ErrorModule
Gets a textual description of this module : getDescription() + getEvalName()
toString() - Method in class weka.classifiers.timeseries.HoltWinters
 
toString() - Method in class weka.classifiers.timeseries.WekaForecaster
 
toSummaryString() - Method in class weka.classifiers.timeseries.eval.ErrorModule
 
toSummaryString() - Method in class weka.classifiers.timeseries.eval.TSEvalModule
Return the summary description of the computed measure for each target.
toSummaryString() - Method in class weka.classifiers.timeseries.eval.TSEvaluation
Generates a String containing the results of evaluating the forecaster.
trendSmoothingFactorTipText() - Method in class weka.classifiers.timeseries.HoltWinters
Tip text for this property
TSEvalModule - Class in weka.classifiers.timeseries.eval
Abstract superclass of all evaluation modules.
TSEvalModule() - Constructor for class weka.classifiers.timeseries.eval.TSEvalModule
 
TSEvaluation - Class in weka.classifiers.timeseries.eval
Main evaluation routines for time series forecasting models.
TSEvaluation(Instances, double) - Constructor for class weka.classifiers.timeseries.eval.TSEvaluation
Constructor.
TSEvaluation(Instances, Instances) - Constructor for class weka.classifiers.timeseries.eval.TSEvaluation
Constructor.
TSForecaster - Interface in weka.classifiers.timeseries
Interface for something that can produce time series predictions.
TSLagMaker - Class in weka.filters.supervised.attribute
A class for creating lagged versions of target variable(s) for use in time series forecasting.
TSLagMaker() - Constructor for class weka.filters.supervised.attribute.TSLagMaker
 
TSLagMaker.Periodicity - Enum in weka.filters.supervised.attribute
Enum defining periodicity
TSLagMaker.PeriodicityHandler - Class in weka.filters.supervised.attribute
Helper class to manage time stamp manipulation with respect to various periodicities.
TSLagMaker.PeriodicityHandler() - Constructor for class weka.filters.supervised.attribute.TSLagMaker.PeriodicityHandler
 
TSLagUser - Interface in weka.classifiers.timeseries.core
Interface to something that uses the TSLagMaker class.

U

updateForecaster(double) - Method in class weka.classifiers.timeseries.HoltWinters
Update the smoothed estimates using the supplied value
updateForecaster(double) - Method in interface weka.classifiers.timeseries.PrimingDataLearner
Update the forecaster on a priming instance or predicted value (for closed-loop projection)
updateOutputPanel() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Updates the status/selection of various widgets on the output panel
updateOverlayPanel() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Updates the status/selection of widgets on the overlay panel
updatePanel() - Method in class weka.classifiers.timeseries.gui.AdvancedConfigPanel
Updates various enabled/selected status of widgets based on the current configuration
useDefaultVisual() - Method in class weka.gui.beans.TimeSeriesForecasting
Use the default images for a data source
usesState() - Method in interface weka.classifiers.timeseries.TSForecaster
Check whether the base learner requires operations regarding state
usesState() - Method in class weka.classifiers.timeseries.WekaForecaster
Check whether the base learner requires operations regarding state
Utils - Class in weka.classifiers.timeseries.core
Static utility routines.
Utils() - Constructor for class weka.classifiers.timeseries.core.Utils
 

V

valueOf(String) - Static method in enum weka.classifiers.timeseries.core.CustomPeriodicTest.Operator
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum weka.filters.supervised.attribute.TSLagMaker.Periodicity
Returns the enum constant of this type with the specified name.
values() - Static method in enum weka.classifiers.timeseries.core.CustomPeriodicTest.Operator
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum weka.filters.supervised.attribute.TSLagMaker.Periodicity
Returns an array containing the constants of this enum type, in the order they are declared.
valueSmoothingFactorTipText() - Method in class weka.classifiers.timeseries.HoltWinters
Tip text for this property

W

weka.classifiers.timeseries - package weka.classifiers.timeseries
 
weka.classifiers.timeseries.core - package weka.classifiers.timeseries.core
 
weka.classifiers.timeseries.eval - package weka.classifiers.timeseries.eval
 
weka.classifiers.timeseries.eval.graph - package weka.classifiers.timeseries.eval.graph
 
weka.classifiers.timeseries.gui - package weka.classifiers.timeseries.gui
 
weka.classifiers.timeseries.gui.explorer - package weka.classifiers.timeseries.gui.explorer
 
weka.filters.supervised.attribute - package weka.filters.supervised.attribute
 
weka.gui.beans - package weka.gui.beans
 
weka.gui.knowledgeflow - package weka.gui.knowledgeflow
 
weka.gui.knowledgeflow.steps - package weka.gui.knowledgeflow.steps
 
weka.knowledgeflow.steps - package weka.knowledgeflow.steps
 
WekaForecaster - Class in weka.classifiers.timeseries
Class that implements time series forecasting using a Weka regression scheme.
WekaForecaster() - Constructor for class weka.classifiers.timeseries.WekaForecaster
 
A B C D E F G H I J L M O P R S T U V W 

Copyright © 2019 University of Waikato, Hamilton, NZ. All Rights Reserved.