public class Id3
extends weka.classifiers.AbstractClassifier
implements weka.core.TechnicalInformationHandler, weka.classifiers.Sourcable
@article{Quinlan1986,
author = {R. Quinlan},
journal = {Machine Learning},
number = {1},
pages = {81-106},
title = {Induction of decision trees},
volume = {1},
year = {1986}
}
Valid options are:
-D If set, classifier is run in debug mode and may output additional info to the console
| Constructor and Description |
|---|
Id3() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(weka.core.Instances data)
Builds Id3 decision tree classifier.
|
double |
classifyInstance(weka.core.Instance instance)
Classifies a given test instance using the decision tree.
|
double[] |
distributionForInstance(weka.core.Instance instance)
Computes class distribution for instance using decision tree.
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing the classifier.
|
static void |
main(java.lang.String[] args)
Main method.
|
java.lang.String |
toSource(java.lang.String className)
Returns a string that describes the classifier as source.
|
java.lang.String |
toString()
Prints the decision tree using the private toString method from below.
|
batchSizeTipText, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, getOptions, implementsMoreEfficientBatchPrediction, listOptions, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces, setOptionspublic java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.AbstractClassifierpublic void buildClassifier(weka.core.Instances data)
throws java.lang.Exception
buildClassifier in interface weka.classifiers.Classifierdata - the training datajava.lang.Exception - if classifier can't be built successfullypublic double classifyInstance(weka.core.Instance instance)
throws weka.core.NoSupportForMissingValuesException
classifyInstance in interface weka.classifiers.ClassifierclassifyInstance in class weka.classifiers.AbstractClassifierinstance - the instance to be classifiedweka.core.NoSupportForMissingValuesException - if instance has missing valuespublic double[] distributionForInstance(weka.core.Instance instance)
throws weka.core.NoSupportForMissingValuesException
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifierinstance - the instance for which distribution is to be computedweka.core.NoSupportForMissingValuesException - if instance has missing valuespublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String toSource(java.lang.String className)
throws java.lang.Exception
public static double classify(Object[] i);
where the array i contains elements that are either Double,
String, with missing values represented as null. The generated code is
public domain and comes with no warranty. toSource in interface weka.classifiers.SourcableclassName - the name that should be given to the source class.java.lang.Exception - if the source can't be computedpublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.classifiers.AbstractClassifierpublic static void main(java.lang.String[] args)
args - the options for the classifier