Skip navigation links
A B C D E F G H L M N P S T U W 

A

assignIDs(int) - Method in class weka.classifiers.trees.ft.FTtree
Assigns unique IDs to all nodes in the tree
assignLeafModelNumbers(int) - Method in class weka.classifiers.trees.ft.FTtree
Assigns numbers to the logistic regression models at the leaves of the tree

B

binSplitTipText() - Method in class weka.classifiers.trees.FT
Returns the tip text for this property
buildClassifier(Instances) - Method in class weka.classifiers.trees.FT
Builds the classifier.
buildClassifier(Instances) - Method in class weka.classifiers.trees.ft.FTInnerNode
Method for building a Functional Inner tree (only called for the root node).
buildClassifier(Instances) - Method in class weka.classifiers.trees.ft.FTLeavesNode
Method for building a Functional Leaves tree (only called for the root node).
buildClassifier(Instances) - Method in class weka.classifiers.trees.ft.FTNode
Method for building a Functional tree (only called for the root node).
buildClassifier(Instances) - Method in class weka.classifiers.trees.ft.FTtree
Method for building a Functional Tree (only called for the root node).
buildClassifier(Instances) - Method in class weka.classifiers.trees.ft.LogisticBase
Builds the logistic regression model usiing LogitBoost.
buildTree(Instances, SimpleLinearRegression[][], double, double) - Method in class weka.classifiers.trees.ft.FTInnerNode
Method for building the tree structure.
buildTree(Instances, SimpleLinearRegression[][], double, double) - Method in class weka.classifiers.trees.ft.FTLeavesNode
Method for building the tree structure.
buildTree(Instances, SimpleLinearRegression[][], double, double) - Method in class weka.classifiers.trees.ft.FTNode
Method for building the tree structure.
buildTree(Instances, SimpleLinearRegression[][], double, double) - Method in class weka.classifiers.trees.ft.FTtree
Abstract method for building the tree structure.

C

classifyInstance(Instance) - Method in class weka.classifiers.trees.FT
Classifies an instance.
cleanup() - Method in class weka.classifiers.trees.ft.FTtree
Cleanup in order to save memory.
cleanup() - Method in class weka.classifiers.trees.ft.LogisticBase
Cleanup in order to save memory.

D

distributionForInstance(Instance) - Method in class weka.classifiers.trees.FT
Returns class probabilities for an instance.
distributionForInstance(Instance) - Method in class weka.classifiers.trees.ft.FTInnerNode
Returns the class probabilities for an instance given by the Functional tree.
distributionForInstance(Instance) - Method in class weka.classifiers.trees.ft.FTLeavesNode
Returns the class probabilities for an instance given by the Functional Leaves tree.
distributionForInstance(Instance) - Method in class weka.classifiers.trees.ft.FTNode
Returns the class probabilities for an instance given by the Functional Tree.
distributionForInstance(Instance) - Method in class weka.classifiers.trees.ft.FTtree
Returns the class probabilities for an instance given by the Functional tree.
distributionForInstance(Instance) - Method in class weka.classifiers.trees.ft.LogisticBase
Returns class probabilities for an instance.

E

enumerateMeasures() - Method in class weka.classifiers.trees.FT
Returns an enumeration of the additional measure names
errorOnProbabilitiesTipText() - Method in class weka.classifiers.trees.FT
Returns the tip text for this property

F

FT - Class in weka.classifiers.trees
Builds 'functional trees' for classification, more specifically, functional trees with logistic regression functions at the inner nodes and/or leaves.
FT() - Constructor for class weka.classifiers.trees.FT
Creates an instance of FT with standard options
FTInnerNode - Class in weka.classifiers.trees.ft
Class for Functional Inner tree structure.
FTInnerNode(boolean, int, int, double, boolean) - Constructor for class weka.classifiers.trees.ft.FTInnerNode
Constructor for Functional Inner tree node.
FTLeavesNode - Class in weka.classifiers.trees.ft
Class for Functional Leaves tree version.
FTLeavesNode(boolean, int, int, double, boolean) - Constructor for class weka.classifiers.trees.ft.FTLeavesNode
Constructor for Functional Leaves tree node.
FTNode - Class in weka.classifiers.trees.ft
Class for Functional tree structure.
FTNode(boolean, int, int, double, boolean) - Constructor for class weka.classifiers.trees.ft.FTNode
Constructor for Functional tree node.
FTtree - Class in weka.classifiers.trees.ft
Abstract class for Functional tree structure.
FTtree() - Constructor for class weka.classifiers.trees.ft.FTtree
 

G

getBinSplit() - Method in class weka.classifiers.trees.FT
Get the value of binarySplits.
getCapabilities() - Method in class weka.classifiers.trees.FT
Returns default capabilities of the classifier.
getConstError(double[]) - Method in class weka.classifiers.trees.ft.FTtree
 
getErrorOnProbabilities() - Method in class weka.classifiers.trees.FT
Get the value of errorOnProbabilities.
getMaxIterations() - Method in class weka.classifiers.trees.ft.LogisticBase
Returns the maxIterations parameter.
getMeasure(String) - Method in class weka.classifiers.trees.FT
Returns the value of the named measure
getMinNumInstances() - Method in class weka.classifiers.trees.FT
Get the value of minNumInstances.
getModelParameters() - Method in class weka.classifiers.trees.ft.FTtree
Returns a string describing the number of LogitBoost iterations performed at this node, the total number of LogitBoost iterations performed (including iterations at higher levels in the tree), and the number of training examples at this node.
getModelType() - Method in class weka.classifiers.trees.FT
Get the type of functional tree model being used.
getNodes() - Method in class weka.classifiers.trees.ft.FTtree
Return a list of all inner nodes in the tree
getNodes(Vector) - Method in class weka.classifiers.trees.ft.FTtree
Fills a list with all inner nodes in the tree
getNumBoostingIterations() - Method in class weka.classifiers.trees.FT
Get the value of numBoostingIterations.
getNumInnerNodes() - Method in class weka.classifiers.trees.ft.FTtree
Method to count the number of inner nodes in the tree
getNumLeaves() - Method in class weka.classifiers.trees.ft.FTtree
Returns the number of leaves in the tree.
getNumRegressions() - Method in class weka.classifiers.trees.ft.LogisticBase
The number of LogitBoost iterations performed (= the number of simple regression functions fit).
getOptions() - Method in class weka.classifiers.trees.FT
Gets the current settings of the Classifier.
getRevision() - Method in class weka.classifiers.trees.ft.FTInnerNode
Returns the revision string.
getRevision() - Method in class weka.classifiers.trees.ft.FTLeavesNode
Returns the revision string.
getRevision() - Method in class weka.classifiers.trees.ft.FTNode
Returns the revision string.
getRevision() - Method in class weka.classifiers.trees.ft.FTtree
Returns the revision string.
getRevision() - Method in class weka.classifiers.trees.FT
Returns the revision string.
getRevision() - Method in class weka.classifiers.trees.ft.LogisticBase
Returns the revision string.
getTechnicalInformation() - Method in class weka.classifiers.trees.FT
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
getUseAIC() - Method in class weka.classifiers.trees.FT
Get the value of useAIC.
getUseAIC() - Method in class weka.classifiers.trees.ft.LogisticBase
Get the value of useAIC.
getUsedAttributes() - Method in class weka.classifiers.trees.ft.LogisticBase
Returns an array of the indices of the attributes used in the logistic model.
getWeightTrimBeta() - Method in class weka.classifiers.trees.FT
Get the value of weightTrimBeta.
getWeightTrimBeta() - Method in class weka.classifiers.trees.ft.LogisticBase
Get the value of weightTrimBeta.
globalInfo() - Method in class weka.classifiers.trees.FT
Returns a string describing classifier
graph() - Method in class weka.classifiers.trees.ft.FTtree
Returns graph describing the tree.
graph() - Method in class weka.classifiers.trees.FT
Returns graph describing the tree.
graphType() - Method in class weka.classifiers.trees.FT
Returns the type of graph this classifier represents.

H

hasModels() - Method in class weka.classifiers.trees.ft.FTtree
Returns true if the logistic regression model at this node has changed compared to the one at the parent node.

L

listOptions() - Method in class weka.classifiers.trees.FT
Returns an enumeration describing the available options.
LogisticBase - Class in weka.classifiers.trees.ft
Base/helper class for building logistic regression models with the LogitBoost algorithm.
LogisticBase() - Constructor for class weka.classifiers.trees.ft.LogisticBase
Constructor that creates LogisticBase object with standard options.
LogisticBase(int, boolean, boolean) - Constructor for class weka.classifiers.trees.ft.LogisticBase
Constructor to create LogisticBase object.

M

main(String[]) - Static method in class weka.classifiers.trees.FT
Main method for testing this class
measureNumLeaves() - Method in class weka.classifiers.trees.FT
Returns the number of leaves in the tree
measureTreeSize() - Method in class weka.classifiers.trees.FT
Returns the size of the tree
minNumInstancesTipText() - Method in class weka.classifiers.trees.FT
Returns the tip text for this property
MODEL_FT - Static variable in class weka.classifiers.trees.FT
model types
MODEL_FTInner - Static variable in class weka.classifiers.trees.FT
 
MODEL_FTLeaves - Static variable in class weka.classifiers.trees.FT
 
modelDistributionForInstance(Instance) - Method in class weka.classifiers.trees.ft.FTtree
Returns the class probabilities for an instance according to the logistic model at the node.
modelsToString() - Method in class weka.classifiers.trees.ft.FTtree
Returns a string describing the logistic regression function at the node.
modelTypeTipText() - Method in class weka.classifiers.trees.FT
Returns the tip text for this property

N

numBoostingIterationsTipText() - Method in class weka.classifiers.trees.FT
Returns the tip text for this property
numLeaves() - Method in class weka.classifiers.trees.ft.FTtree
Returns the number of leaves (normal count).
numNodes() - Method in class weka.classifiers.trees.ft.FTtree
Returns the number of nodes.

P

percentAttributesUsed() - Method in class weka.classifiers.trees.ft.LogisticBase
Returns the fraction of all attributes in the data that are used in the logistic model (in percent).
prune() - Method in class weka.classifiers.trees.ft.FTInnerNode
Prunes a tree using C4.5 pruning procedure.
prune() - Method in class weka.classifiers.trees.ft.FTLeavesNode
Prunes a tree using C4.5 pruning procedure.
prune() - Method in class weka.classifiers.trees.ft.FTNode
Method for prunning a tree using C4.5 pruning procedure.
prune() - Method in class weka.classifiers.trees.ft.FTtree
Abstract Method that prunes a tree using C4.5 pruning procedure.

S

setBinSplit(boolean) - Method in class weka.classifiers.trees.FT
Set the value of binarySplits.
setErrorOnProbabilities(boolean) - Method in class weka.classifiers.trees.FT
Set the value of errorOnProbabilities.
setHeuristicStop(int) - Method in class weka.classifiers.trees.ft.LogisticBase
Sets the option "heuristicStop".
setMaxIterations(int) - Method in class weka.classifiers.trees.ft.LogisticBase
Sets the parameter "maxIterations".
setMinNumInstances(int) - Method in class weka.classifiers.trees.FT
Set the value of minNumInstances.
setModelType(SelectedTag) - Method in class weka.classifiers.trees.FT
Set the Functional Tree type.
setNumBoostingIterations(int) - Method in class weka.classifiers.trees.FT
Set the value of numBoostingIterations.
setOptions(String[]) - Method in class weka.classifiers.trees.FT
Parses a given list of options.
setUseAIC(boolean) - Method in class weka.classifiers.trees.ft.LogisticBase
Set the value of useAIC.
setUseAIC(boolean) - Method in class weka.classifiers.trees.FT
Set the value of useAIC.
setWeightTrimBeta(double) - Method in class weka.classifiers.trees.ft.LogisticBase
Sets the option "weightTrimBeta".
setWeightTrimBeta(double) - Method in class weka.classifiers.trees.FT
Set the value of weightTrimBeta.

T

TAGS_MODEL - Static variable in class weka.classifiers.trees.FT
possible model types.
toString() - Method in class weka.classifiers.trees.ft.FTtree
Returns a description of the Functional tree (tree structure and logistic models)
toString() - Method in class weka.classifiers.trees.ft.LogisticBase
Returns a description of the logistic model (i.e., attributes and coefficients).
toString() - Method in class weka.classifiers.trees.FT
Returns a description of the classifier.

U

useAICTipText() - Method in class weka.classifiers.trees.FT
Returns the tip text for this property

W

weightTrimBetaTipText() - Method in class weka.classifiers.trees.FT
Returns the tip text for this property
weka.classifiers.trees - package weka.classifiers.trees
 
weka.classifiers.trees.ft - package weka.classifiers.trees.ft
 
A B C D E F G H L M N P S T U W 
Skip navigation links