public class ExtraTree
extends weka.classifiers.RandomizableClassifier
implements java.io.Serializable, weka.core.OptionHandler, weka.core.TechnicalInformationHandler, weka.core.WeightedInstancesHandler, weka.core.PartitionGenerator
@article{Geurts2006,
author = {Pierre Geurts and Damien Ernst and Louis Wehenkel},
journal = {Machine Learning},
number = {1},
pages = {3-42},
title = {Extremely randomized trees},
volume = {63},
year = {2006}
}
Valid options are:
-K <number of attributes> Number of attributes to randomly choose at a node. If values is -1, (m - 1) will be used for regression problems, and Math.rint(sqrt(m - 1)) for classification problems, where m is the number of predictors, as specified in Geurts et al. (default -1).
-N <minimum number of instances> The minimum number of instances required at a node for splitting to be considered. If value is -1, 5 will be used for regression problems and 2 for classification problems, as specified in Geurts et al. (default -1).
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
| Constructor and Description |
|---|
ExtraTree() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(weka.core.Instances data)
Builds one tree.
|
double[] |
distributionForInstance(weka.core.Instance inst)
Returns the distribution.
|
void |
generatePartition(weka.core.Instances data)
Builds the classifier to generate a partition.
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
int |
getK()
Get the value of K.
|
double[] |
getMembershipValues(weka.core.Instance instance)
Computes array that indicates node membership.
|
int |
getNmin()
Get the value of n_min.
|
java.lang.String[] |
getOptions()
Gets options from this classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
|
java.lang.String |
globalInfo()
Returns a string describing classifier
|
java.lang.String |
kTipText()
Returns the tip text for this property
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Lists the command-line options for this classifier.
|
static void |
main(java.lang.String[] args)
Main method for this class.
|
java.lang.String |
nminTipText()
Returns the tip text for this property
|
int |
numElements()
Returns the number of elements in the partition.
|
void |
setK(int k)
Set the value of K.
|
void |
setNmin(int n)
Set the value of n_min.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
java.lang.String |
toString()
Returns classifier description.
|
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacespublic java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface weka.core.TechnicalInformationHandlerpublic java.lang.String kTipText()
public int getK()
public void setK(int k)
k - value to assign to K.public java.lang.String nminTipText()
public int getNmin()
public void setNmin(int n)
n - value to assign to n_min.public java.util.Enumeration<weka.core.Option> listOptions()
listOptions in interface weka.core.OptionHandlerlistOptions in class weka.classifiers.RandomizableClassifierpublic java.lang.String[] getOptions()
getOptions in interface weka.core.OptionHandlergetOptions in class weka.classifiers.RandomizableClassifierpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
-K <number of attributes> Number of attributes to randomly choose at a node. If values is -1, (m - 1) will be used for regression problems, and Math.rint(sqrt(m - 1)) for classification problems, where m is the number of predictors, as specified in Geurts et al. (default -1).
-N <minimum number of instances> The minimum number of instances required at a node for splitting to be considered. If value is -1, 5 will be used for regression problems and 2 for classification problems, as specified in Geurts et al. (default -1).
-S <num> Random number seed. (default 1)
-D If set, classifier is run in debug mode and may output additional info to the console
setOptions in interface weka.core.OptionHandlersetOptions in class weka.classifiers.RandomizableClassifieroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic weka.core.Capabilities getCapabilities()
getCapabilities in interface weka.classifiers.ClassifiergetCapabilities in interface weka.core.CapabilitiesHandlergetCapabilities in class weka.classifiers.AbstractClassifierpublic void buildClassifier(weka.core.Instances data)
throws java.lang.Exception
buildClassifier in interface weka.classifiers.Classifierjava.lang.Exceptionpublic double[] distributionForInstance(weka.core.Instance inst)
distributionForInstance in interface weka.classifiers.ClassifierdistributionForInstance in class weka.classifiers.AbstractClassifierpublic java.lang.String toString()
toString in class java.lang.Objectpublic void generatePartition(weka.core.Instances data)
throws java.lang.Exception
generatePartition in interface weka.core.PartitionGeneratorjava.lang.Exceptionpublic double[] getMembershipValues(weka.core.Instance instance)
throws java.lang.Exception
getMembershipValues in interface weka.core.PartitionGeneratorjava.lang.Exceptionpublic int numElements()
throws java.lang.Exception
numElements in interface weka.core.PartitionGeneratorjava.lang.Exceptionpublic java.lang.String getRevision()
getRevision in interface weka.core.RevisionHandlergetRevision in class weka.classifiers.AbstractClassifierpublic static void main(java.lang.String[] args)